Chromium: A stream-processing framework for interactive rendering on clusters

被引:0
|
作者
Humphreys, G
Houston, M
Ng, R
Frank, R
Ahern, S
Kirchner, PD
Klosowski, JT
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2002年 / 21卷 / 03期
关键词
scalable rendering; cluster rendering; parallel rendering; tiled displays; remote graphics; virtual graphics; stream processing;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm call be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications that use Chromium to achieve good scalability oil clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.
引用
收藏
页码:693 / 702
页数:10
相关论文
共 50 条
  • [41] Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework
    Kroes, Thomas
    Post, Frits H.
    Botha, Charl P.
    PLOS ONE, 2012, 7 (07):
  • [42] A framework for interactive GPU-supported rendering and styling of virtual hair
    Zhang, Rui
    Wuensche, Burkhard C.
    GRAPP 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL AS/IE, 2007, : 204 - 211
  • [43] Interactive steering on in situ particle-based volume rendering framework
    Takuma Kawamura
    Yuta Hasegawa
    Yasuhiro Idomura
    Journal of Visualization, 2024, 27 (1) : 89 - 107
  • [44] A parallel framework for interactive rendering of massive complex scenes on PCs cluster
    Jiang, Xiaohong
    Lei, Kalbin
    Xiong, Hua
    Li, Yan
    Shi, Jiaoying
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS, 2007, : 978 - +
  • [45] Localisation of subdural EEG electrode bundles in an interactive volume rendering framework
    Noordmans, HJ
    van Veelen, CWM
    Viergever, MA
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 734 - 741
  • [46] Towards a Framework for Data Stream Processing in the Fog
    Hießl T.
    Hochreiner C.
    Schulte S.
    Informatik-Spektrum, 2019, 42 (04) : 256 - 265
  • [47] A Framework for Stream Data Processing in Seamless LBS
    Kim, Nan Ju
    Choi, EuiIn
    INTERNATIONAL CONFERENCE ON ADVANCED MANAGEMENT SCIENCE AND INFORMATION ENGINEERING (AMSIE 2015), 2015, : 707 - 713
  • [48] A Prediction Framework for Distributed Data Stream Processing
    He ZhiYong
    Du RongHua
    PROCEEDINGS OF THE 2009 PACIFIC-ASIA CONFERENCE ON CIRCUITS, COMMUNICATIONS AND SYSTEM, 2009, : 179 - 183
  • [49] Adapting Stream Processing Framework for Video Analysis
    Chakravarthy, S.
    Aved, A.
    Shirvani, S.
    Annappa, M.
    Blasch, E.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2648 - 2657
  • [50] Evidence Updating for Stream-Processing in Big-Data: Robust Conditioning in Soft and Hard Data Fusion Environments
    Wickramarathne, Thanuka
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 327 - 333