Improved Optimum Radius for Robust Stability of Schur Polynomials

被引:2
|
作者
Choo, Younseok [1 ]
机构
[1] Hongik Univ, Dept Elect & Elect Engn, Sejong Chungnam 339701, South Korea
关键词
Robust stability; Schur polynomial;
D O I
10.1007/s10957-013-0419-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An approach based on the Rouch, theorem was introduced in the literature to compute the optimum radius for robust stability of Schur polynomials. Later an attempt was made to improve the result, but it was shown to be incorrect. The purpose of this note is to show that an improved optimum radius still can be obtained by modifying the proposed method. The result of this note can be easily extended to the multidimensional cases.
引用
收藏
页码:553 / 556
页数:4
相关论文
共 50 条
  • [41] Necessary conditions for Schur-stability of interval polynomials
    Greiner, R
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 740 - 744
  • [42] Conditions for the Schur stability of segments of polynomials of the same degree
    Baltazar Aguirre-Hernández
    Ricardo García-Sosa
    Horacio Leyva
    Julio Solís-Daun
    Francisco A. Carrillo
    [J]. Boletín de la Sociedad Matemática Mexicana, 2015, 21 (2) : 309 - 321
  • [43] Conditions for the Schur stability of segments of polynomials of the same degree
    Aguirre-Hernandez, Baltazar
    Garcia-Sosa, Ricardo
    Leyva, Horacio
    Solis-Daun, Julio
    Carrillo, Francisco A.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (02): : 309 - 321
  • [44] STABILITY REGIONS OF SCHUR AND G-STABLE POLYNOMIALS
    SOLAK, MK
    PENG, AC
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1993, 4 (01) : 91 - 101
  • [45] Relaxed monotonic conditions for Schur stability of real polynomials
    Nguyen, Thang V.
    Mori, Yoshihiro
    Mori, Takehiro
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (10) : 2326 - 2328
  • [46] A SUFFICIENT CONDITION FOR SCHUR STABILITY OF THE CONVEX COMBINATION OF THE POLYNOMIALS
    Bialas, Stanislaw
    [J]. OPUSCULA MATHEMATICA, 2005, 25 (01) : 25 - 28
  • [47] IMPROVED CAUCHY RADIUS FOR SCALAR AND MATRIX POLYNOMIALS
    Melman, A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 613 - 624
  • [48] Robust Schur stability and eigenvectors of uncertain matrices
    Wang, SG
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3449 - 3454
  • [49] ROBUST SCHUR POLYNOMIAL STABILITY AND KHARITONOV THEOREM
    KRAUS, F
    ANDERSON, BDO
    MANSOUR, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (05) : 1213 - 1225
  • [50] Robust stability of multivariate polynomials
    Kharitonov, VL
    [J]. ADVANCES IN MATHEMATICAL SYSTEMS THEORY: A VOLUME IN HONOR OF DIEDERICH HINRICHSEN, 2001, : 19 - 29