CONCAVE FUNCTIONS OF PARTITIONED MATRICES WITH NUMERICAL RANGES IN A SECTOR

被引:8
|
作者
Hou, Lei [1 ]
Zhang, Dengpeng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Rotfel'd theorem; concave function; numerical range; accretive-dissipative matrix; ACCRETIVE-DISSIPATIVE MATRICES; DETERMINANTAL INEQUALITIES; EIGENVALUE INEQUALITIES; EXTENSION; CONVEX;
D O I
10.7153/mia-20-40
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two inequalities for concave functions and partitioned matrices whose numerical ranges in a sector. These complement some results of Zhang in [Linear Multilinear Algebra 63 (2015) 2511-2517].
引用
收藏
页码:583 / 589
页数:7
相关论文
共 50 条
  • [31] Numerical ranges of reducible companion matrices
    Gau, Hwa-Long
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (05) : 1310 - 1321
  • [32] SINGULAR VALUE INEQUALITIES OF MATRICES WITH CONCAVE FUNCTIONS
    Xu, Huan
    Yang, Junjian
    Ma, Shengyan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1471 - 1479
  • [33] The normalized numerical ranges of 2 × 2 matrices
    L. Z. Gevorgyan
    Journal of Contemporary Mathematical Analysis, 2011, 46 : 243 - 251
  • [34] HIGHER RANK NUMERICAL RANGES OF RECTANGULAR MATRICES
    Zahraei, Mohsen
    Aghamollaei, Gholamreza
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 133 - 142
  • [35] HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES
    Gau, Hwa-Long
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (01) : 23 - 43
  • [36] NUMERICAL RANGES AND COMPRESSIONS OF Sn-MATRICES
    Gau, Hwa-Long
    Wu, Pei Yuan
    OPERATORS AND MATRICES, 2013, 7 (02): : 465 - 476
  • [37] Diagonals and numerical ranges of direct sums of matrices
    Lee, Hsin-Yi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2584 - 2597
  • [38] Diagonals and numerical ranges of weighted shift matrices
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 514 - 532
  • [39] Refinements for numerical ranges of weighted shift matrices
    Tsai, Ming-Cheng
    Gau, Hwa-Long
    Wang, Han-Chun
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05): : 568 - 578
  • [40] Quaternionic Numerical Ranges of Normal Quaternion Matrices
    Feng Lianggui
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 100 - 106