Periodic solutions for first order neutral functional differential equations with multiple deviating arguments
被引:10
|
作者:
Peng, Lequn
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R ChinaHunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R China
Peng, Lequn
[1
]
Wang, Lijuan
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R ChinaHunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R China
Wang, Lijuan
[2
]
机构:
[1] Hunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R China
[2] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R China
first order neutral functional differential equation;
periodic solution;
coincidence degree;
EXISTENCE;
UNIQUENESS;
KIND;
D O I:
10.4064/ap111-2-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider first order neutral functional differential equations with multiple deviating arguments of the form (x(t) + Bx(t - delta))' = g(0)(t, x(t)) + (n)Sigma(k=1)gk(t,x(t - tau(k)(t))) + p(t). By using coincidence degree theory, we establish some sufficient conditions on the existence and uniqueness of periodic solutions for the above equation. Moreover, two examples are given to illustrate the effectiveness of our results.
机构:
Hunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R ChinaHunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R China
Xiao, Jinsong
Liu, Bingwen
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Math & Informat Sci, Jiaxing 314001, Zhejiang, Peoples R ChinaHunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R China
机构:
Univ Sci & Technol China, Joint Adv Res Ctr, Suzhou 215123, Jiangsu, Peoples R China
City Univ Hong Kong, Suzhou 215123, Jiangsu, Peoples R ChinaUniv Sci & Technol China, Joint Adv Res Ctr, Suzhou 215123, Jiangsu, Peoples R China