Periodic solutions for first order neutral functional differential equations with multiple deviating arguments

被引:10
|
作者
Peng, Lequn [1 ]
Wang, Lijuan [2 ]
机构
[1] Hunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R China
[2] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
first order neutral functional differential equation; periodic solution; coincidence degree; EXISTENCE; UNIQUENESS; KIND;
D O I
10.4064/ap111-2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider first order neutral functional differential equations with multiple deviating arguments of the form (x(t) + Bx(t - delta))' = g(0)(t, x(t)) + (n)Sigma(k=1)gk(t,x(t - tau(k)(t))) + p(t). By using coincidence degree theory, we establish some sufficient conditions on the existence and uniqueness of periodic solutions for the above equation. Moreover, two examples are given to illustrate the effectiveness of our results.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 50 条