Retrieval of land surface temperature and water vapor content from AVHRR thermal imagery using an artificial neural network

被引:0
|
作者
Liang, SL
机构
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
AVHRR thermal imagery is sensitive to both water vapor content (WVC) and land surface temperature (LST). A new algorithm based on MODTRAN simulations and neural network regression technique for estimating WVC and LST from the two AVHRR thermal channels is developed. The Navy climatological profiles and measured atmospheric profiles from TOGA COARE upper-air sounding archive were used to simulate AVHRR channels 4 and 5 radiances with different combinations of surface temperature, emissivity, viewing zenith angle. The simulated radiances were then converted to brightness temperatures. A feed-forward neural network was used to link those physical parameters with simulated brightness temperatures. This algorithm has been tested using measurements from BOREAS and HAPEX, and results indicate that this procedure performs reasonably well. The required improvements are also highlighted.
引用
收藏
页码:1959 / 1961
页数:3
相关论文
共 50 条
  • [21] Thermal Infrared Hyperspectral Band Selection via Graph Neural Network for Land Surface Temperature Retrieval
    Zhao, Enyu
    Qu, Nianxin
    Wang, Yulei
    Gao, Caixia
    Duan, Si-Bo
    Zeng, Jian
    Zhang, Qiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Integration of Visible and Thermal Imagery with an Artificial Neural Network Approach for Robust Forecasting of Canopy Water Content in Rice
    Elsherbiny, Osama
    Zhou, Lei
    Feng, Lei
    Qiu, Zhengjun
    [J]. REMOTE SENSING, 2021, 13 (09)
  • [23] Precipitable Water Vapor Retrieval Using Neural Network from Infrared Hyperspectral Soundings
    Zhang, Shenglan
    Xu, Lisheng
    Ding, Jilie
    Liu, Hailei
    Deng, Xiaobo
    [J]. ADVANCED MATERIALS IN MICROWAVES AND OPTICS, 2012, 500 : 390 - 396
  • [24] Estimation of the total atmospheric water vapor content and land surface temperature based on AATSR thermal data
    Zhang, Tangtang
    Wen, Jun
    van der Velde, Rogier
    Meng, Xianhong
    Li, Zhenchao
    Liu, Yuanyong
    Liu, Rong
    [J]. SENSORS, 2008, 8 (03) : 1832 - 1845
  • [25] Determination of land surface temperature using precipitable water based Split-Window and Artificial Neural Network in Turkey
    Yildiz, B. Yigit
    Sahin, Mehmet
    Senkal, Ozan
    Pestimalci, Vedat
    Tepecik, Kadir
    [J]. ADVANCES IN SPACE RESEARCH, 2014, 54 (08) : 1544 - 1551
  • [26] Land surface temperature estimation from AVHRR thermal infrared measurements - An assessment for the AVHRR Land Pathfinder II data set
    Ouaidrari, H
    Goward, SN
    Czajkowski, KP
    Sobrino, JA
    Vermote, E
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 81 (01) : 114 - 128
  • [27] SURFACE TEMPERATURE ESTIMATION USING ARTIFICIAL NEURAL NETWORK
    Veronez, M. R.
    Wittmann, G.
    Reinhardt, A. O.
    Da Silva, R. M.
    [J]. 100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 612 - 617
  • [28] Analysis of principal elements of land surface temperature retrieval from AVHRR over Tibetan Plateau
    Huang, Qingni
    Cao, Guangzhen
    Dong, Lixin
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [29] Land surface temperature retrieval from METOP-AVHRR3 data using a Split-Window algorithm
    Jimenez-Munoz, J. C.
    Sobrino, J. A.
    [J]. REVISTA DE TELEDETECCION, 2009, (32): : 40 - 49
  • [30] Predicting moisture content of soil from thermal properties using artificial neural network
    Sanuade, Oluseun Adetola
    Adetokunbo, Peter
    Oladunjoye, Michael Adeyinka
    Olaojo, Abayomi Adesola
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (18)