Aligning corporate greenhouse-gas emissions targets with climate

被引:0
|
作者
Krabbe, Oskar [1 ,2 ]
Linthorst, Giel [1 ]
Blok, Kornelis [1 ,3 ]
Crijns-Graus, Wma [2 ]
van Vuuren, Detlef P. [2 ,4 ]
Hoehne, Niklas [5 ,6 ]
Faria, Pedro [7 ]
Aden, Nate [8 ,9 ]
Pineda, Alberto Carrillo [10 ]
机构
[1] Ecofys, NL-3526 KL Utrecht, Netherlands
[2] Univ Utrecht, NL-3584 CS Utrecht, Netherlands
[3] Delft Univ Technol, NL-2628 BX Delft, Netherlands
[4] PBL Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands
[5] Ecotys, D-50829 Cologne, Germany
[6] Wageningen Univ, Environm Syst Anal Grp, NL-6708 PB Wageningen, Netherlands
[7] CDP, London E1W 1YW, England
[8] WRI, Washington, DC 20002 USA
[9] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA
[10] WWF Int, CH-1196 Gland, Switzerland
关键词
D O I
10.1038/NCLIMATE2770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy(1). For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level(2,3). At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO(2) between 2011 and 2050 for the 2 degrees C target(4)). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.
引用
收藏
页码:1057 / +
页数:5
相关论文
共 50 条
  • [31] Greenhouse-gas emissions from biofuel combustion in Asia
    Streets, DG
    Waldhoff, ST
    [J]. ENERGY, 1999, 24 (10) : 841 - 855
  • [32] Reply to 'Pseudoreplication and greenhouse-gas emissions from rivers'
    Comer-Warner, Sophie A.
    Romeijn, Paul
    Gooddy, Daren C.
    Ullah, Sami
    Kettridge, Nicholas
    Marchant, Benjamin
    Hannah, David M.
    Krause, Stefan
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [33] Canada to regulate greenhouse-gas, other air emissions
    不详
    [J]. OIL & GAS JOURNAL, 2007, 105 (19) : 34 - 35
  • [34] COMMENTARY: Greenhouse-gas emissions from tropical dams
    Fearnside, Philip M.
    Pueyo, Salvador
    [J]. NATURE CLIMATE CHANGE, 2012, 2 (06) : 382 - 384
  • [35] REDUCING AUSTRALIAN ENERGY SECTOR GREENHOUSE-GAS EMISSIONS
    JONES, BP
    PENG, ZY
    NAUGHTEN, B
    [J]. ENERGY POLICY, 1994, 22 (04) : 270 - 286
  • [36] Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation
    Weiss, Ray F.
    Prinn, Ronald G.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1943): : 1925 - 1942
  • [37] ENVIRONMENTAL AUDITING - ESTIMATING AND REDUCING CORPORATE GREENHOUSE-GAS EMISSIONS USING MONITORING AND TARGETING SOFTWARE SYSTEMS
    MARTIN, PK
    OCALLAGHAN, P
    PROBERT, D
    [J]. APPLIED ENERGY, 1992, 42 (04) : 269 - 288
  • [38] Future electricity-demands and greenhouse-gas emissions in Jordan
    Jaber, JO
    Mohsen, MS
    Probert, SD
    Alees, M
    [J]. APPLIED ENERGY, 2001, 69 (01) : 1 - 18
  • [39] Measuring Greenhouse-Gas Emissions from a Synthetic Tracer Source
    W. Wang
    W. Liu
    T. Zhang
    Y. Lu
    [J]. Journal of Applied Spectroscopy, 2014, 81 : 264 - 272
  • [40] Greenhouse-gas (CO2) emissions in the steel industry
    Lisienko V.G.
    Lapteva A.V.
    Chesnokov Y.N.
    Lugovkin V.V.
    [J]. Steel in Translation, 2015, 45 (9) : 623 - 626