Olfactory Senses Modulate Food Consumption and Physiology in Drosophila melanogaster

被引:2
|
作者
He, Jianzheng [1 ,2 ,3 ]
Tuo, Wenjuan [1 ,2 ]
Zhang, Xueyan [4 ]
Dai, Yuting [4 ]
Fang, Ming [1 ,2 ]
Zhou, Ting [1 ]
Xiu, Minghui [1 ,3 ,4 ]
Liu, Yongqi [1 ,3 ]
机构
[1] Gansu Univ Chinese Med, Prov Level Key Lab Mol Med Major Dis & Prevent &, Lanzhou, Peoples R China
[2] Gansu Univ Chinese Med, Coll Basic Med, Lanzhou, Peoples R China
[3] Gansu Univ Tradit Chinese Med, Key Lab Transfer Dunhuang Med Prov & Ministerial, Lanzhou, Peoples R China
[4] Gansu Univ Chinese Med, Coll Publ Hlth, Lanzhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
olfaction; food consumption; physiology; stress resistance; Drosophila melanogaster; LIFE-SPAN; INSULIN; STRESS; HUNGER; METABOLISM; PERCEPTION; ODOR; BODY;
D O I
10.3389/fnbeh.2022.788633
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Both sensory and metabolic processes guide food intake. Olfactory inputs help coordinate food appreciation and selection, but their role in food consumption and post-feeding physiology remains poorly understood. In this study, using Drosophila melanogaster as a model system, we investigated the effects of olfactory sensory neurons (OSNs) on food consumption, metabolism, and stress responses. We found that dysfunction of OSNs affects diverse processes, including decreased food consumption, increased triacylglycerol level, enhanced stress resistance to starvation or desiccation, and decreased cold resistance. Decreased neuropeptide F receptor (NPFR) level or increased insulin activity in OSNs inhibited food consumption, while impaired NPF signaling or insulin signaling in OSNs increased resistance to starvation and desiccation. These studies provide insights into the function of the olfactory system in control of feeding behaviors and physiology.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Elements of Olfactory Reception in Adult Drosophila melanogaster
    Martin, Fernando
    Boto, Tamara
    Gomez-Diaz, Carolina
    Alcorta, Esther
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2013, 296 (09): : 1477 - 1488
  • [22] COMPUTATION OF OLFACTORY SIGNALS IN DROSOPHILA-MELANOGASTER
    BORST, A
    JOURNAL OF COMPARATIVE PHYSIOLOGY, 1983, 152 (03): : 373 - 383
  • [23] Olfactory conditioning of proboscis activity in Drosophila melanogaster
    Chabaud, Marie-Ange
    Devaud, Jean-Marc
    Pham-Delegue, Minh-Ha
    Preat, Thomas
    Kaiser, Laure
    JOURNAL OF NEUROGENETICS, 2006, 20 (3-4) : 99 - 99
  • [24] Evolution of the olfactory code in the Drosophila melanogaster subgroup
    Stensmyr, MC
    Dekker, T
    Hansson, BS
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 (1531) : 2333 - 2340
  • [25] The olfactory circuit of the fruit fly Drosophila melanogaster
    Liang Liang
    Liqun Luo
    Science China Life Sciences, 2010, 53 : 472 - 484
  • [26] Olfactory conditioning of proboscis activity in Drosophila melanogaster
    Marie-Ange Chabaud
    Jean-Marc Devaud
    Minh-Hà Pham-Delègue
    Thomas Preat
    Laure Kaiser
    Journal of Comparative Physiology A, 2006, 192 : 1335 - 1348
  • [27] GENETICS OF OLFACTORY BEHAVIOR IN DROSOPHILA-MELANOGASTER
    AYYUB, C
    PARANJAPE, J
    RODRIGUES, V
    SIDDIQI, O
    JOURNAL OF NEUROGENETICS, 1990, 6 (04) : 243 - 262
  • [28] Functional analysis of an olfactory receptor in Drosophila melanogaster
    Störtkuhl, KF
    Kettler, R
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) : 9381 - 9385
  • [29] Calmodulin regulates the olfactory performance in Drosophila melanogaster
    Jain, Kalpana
    Lavista-Llanos, Sofia
    Grabe, Veit
    Hansson, Bill S.
    Wicher, Dieter
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Circadian rhythms in olfactory responses of Drosophila melanogaster
    Balaji Krishnan
    Stuart E. Dryer
    Paul E. Hardin
    Nature, 1999, 400 : 375 - 378