Multilayer block copolymer meshes by orthogonal self-assembly

被引:83
|
作者
Tavakkoli, Amir K. G. [1 ]
Nicaise, Samuel M. [1 ]
Gadelrab, Karim R. [2 ]
Alexander-Katz, Alfredo [2 ]
Ross, Caroline A. [2 ]
Berggren, Karl K. [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
美国国家科学基金会;
关键词
THIN-FILMS; CONTROLLED ORIENTATION; LAMELLAR MICRODOMAINS; MIXED-MORPHOLOGY; LARGE-AREA; LITHOGRAPHY; PATTERNS; NANOSTRUCTURES; FABRICATION; ARRAYS;
D O I
10.1038/ncomms10518
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Self-assembly of Protein Nanoarrays on Block Copolymer Templates
    Lau, K. H. Aaron
    Bang, Joona
    Kim, Dong Ha
    Knoll, Wolfgang
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (20) : 3148 - 3157
  • [32] Self-assembly of block copolymer micelles in an ionic liquid
    He, YY
    Li, ZB
    Simone, P
    Lodge, TP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) : 2745 - 2750
  • [33] Guided Self-Assembly of Block-Copolymer Nanostructures
    Karim, A.
    Berry, B.
    Kim, S.
    Bosse, A.
    Douglas, J. F.
    Jones, R. L.
    Briber, R. M.
    Kim, H. C.
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS, 2008, : 875 - 876
  • [34] Inducing block copolymer self-assembly through functionalization
    Magenau, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] Surface patterns from block copolymer self-assembly
    Kim, Ho-Cheol
    Hinsberg, William D.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (06): : 1369 - 1382
  • [36] Self-assembly of block copolymer complexes in organic solvents
    Lefevre, Nathalie
    Fustin, Charles-Andre
    Varshney, Sunil K.
    Gohy, Jean-Francois
    POLYMER, 2007, 48 (08) : 2306 - 2311
  • [37] Block copolymer self-assembly in chemically patterned squares
    Xu, Ji
    Russell, Thomas P.
    Ocko, Benjamin M.
    Checco, Antonio
    SOFT MATTER, 2011, 7 (08) : 3915 - 3919
  • [38] Bactericidal nanopatterns generated by block copolymer self-assembly
    Fontelo, R.
    Soares da Costa, D.
    Reis, R. L.
    Novoa-Carballal, R.
    Pashkuleva, I
    ACTA BIOMATERIALIA, 2020, 112 : 174 - 181
  • [39] Supramolecular materials via block copolymer self-assembly
    Klok, HA
    Lecommandoux, S
    ADVANCED MATERIALS, 2001, 13 (16) : 1217 - 1229
  • [40] Fabrication of Nanodevices Through Block Copolymer Self-Assembly
    Hu, Xiao-Hua
    Xiong, Shisheng
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4