Twisted cubic curves in the Segre variety

被引:1
|
作者
Chung, Kiryong [1 ]
Lee, Wanseok [2 ]
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Daegu 41566, South Korea
[2] Pukyong Natl Univ, Dept Appl Math, Busan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
Rational curves; Stable maps; Stable sheaves;
D O I
10.1016/j.crma.2015.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = P-1 x P-1 x P-1 be the Segre variety. Let S be the space of twisted cubic curves in X with tri-degree (1,1,1). In this note, we prove that S is a rational, smooth variety of dimension 6. Also, we compute the Poincare polynomial of S by stratifying the space into projective space fibration over some base spaces. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1123 / 1127
页数:5
相关论文
共 50 条
  • [31] (Log) twisted curves
    Olsson, Martin C.
    COMPOSITIO MATHEMATICA, 2007, 143 (02) : 476 - 494
  • [32] ON CLOSED TWISTED CURVES
    COSTA, SIR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) : 205 - 214
  • [33] Twisted Hessian Curves
    Bernstein, Daniel J.
    Chuengsatiansup, Chitchanok
    Kohel, David
    Lange, Tanja
    PROGRESS IN CRYPTOLOGY - LATINCRYPT 2015, 2015, 9230 : 269 - 294
  • [34] Twisted Teichmuller Curves
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 145 - 154
  • [35] On rational twisted curves
    Schoute, PH
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1900, 2 : 421 - 428
  • [36] Twisted Edwards curves
    Bernstein, Daniel J.
    Birkner, Peter
    Joye, Marc
    Lange, Tanja
    Peters, Christiane
    PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2008, 2008, 5023 : 389 - +
  • [37] Twisted Teichmuller Curves
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 53 - 59
  • [38] Foliations by Curves on Three-Dimensional Segre Varieties
    Ballico, Edoardo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3727 - 3742
  • [39] Equations for the Fifth Secant Variety of Segre Products of Projective Spaces
    Oeding, Luke
    Sam, Steven V.
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 94 - 99
  • [40] The geometry and topology of entanglement: Conifold, Segre variety, and Hopf fibration
    Heydari, Hoshang
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (4-5) : 400 - 409