Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide

被引:27
|
作者
Chen, Xi [1 ]
Li, Chunhua [2 ]
Tian, Fei [3 ,4 ]
Gamage, Geethal Amila [3 ,4 ]
Sullivan, Sean [1 ]
Zhou, Jianshi [1 ,5 ]
Broido, David [2 ]
Ren, Zhifeng [3 ,4 ]
Shi, Li [1 ,5 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[5] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
关键词
CONDUCTIVITY; PRESSURE; BAS; CRYSTALS; GAP;
D O I
10.1103/PhysRevApplied.11.064070
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent measurements of an unusual high-thermal conductivity of around 1000 W m(-1) K-1 at room temperature in cubic boron arsenide (BAs) confirm predictions from theory and suggest potential applications of this semiconductor compound for thermal management applications. Knowledge of the thermal expansion coefficient and Gruneisen parameter of a material contributes both to the fundamental understanding of its lattice anharmonicity and to assessing its utility as a thermal-management material. However, previous theoretical calculations of the thermal expansion coefficient and Griineisen parameter of BAs have yielded inconsistent results. Here, we report the linear thermal expansion coefficient of BAs obtained from the x-ray diffraction measurements from 300 K to 773 K. The measurement results are in good agreement with our ab initio calculations that account for atomic interactions up to the fifth nearest neighbors. With the measured thermal expansion coefficient and specific heat, a Gruneisen parameter of BAs of 0.84 +/- 0.09 is obtained at 300 K, in excellent agreement with the value of 0.82 calculated from first principles and much lower than prior theoretical results. Our results confirm that BAs exhibits a better thermal expansion coefficient match with commonly used semiconductors than other high-thermal conductivity materials such as diamond and cubic boron nitride.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] NEGATIVE THERMAL-EXPANSION COEFFICIENT IN THE KONDO LATTICE
    BASTIDE, C
    LACROIX, C
    SOLID STATE COMMUNICATIONS, 1986, 59 (03) : 121 - 125
  • [22] ANHARMONICITY AND THERMAL EXPANSION OF SOLIDS
    FLETCHER, GC
    AUSTRALIAN JOURNAL OF PHYSICS, 1961, 14 (03): : 420 - &
  • [23] High ambipolar mobility in cubic boron arsenide
    Shin, Jungwoo
    Gamage, Geethal Amila
    Ding, Zhiwei
    Chen, Ke
    Tian, Fei
    Qian, Xin
    Zhou, Jiawei
    Lee, Hwijong
    Zhou, Jianshi
    Shi, Li
    Thanh Nguyen
    Han, Fei
    Li, Mingda
    Broido, David
    Schmidt, Aaron
    Ren, Zhifeng
    Chen, Gang
    SCIENCE, 2022, 377 (6604) : 437 - 440
  • [24] Anomalous vibrational properties of cubic boron arsenide
    Hadjiev, V. G.
    Iliev, M. N.
    Lv, B.
    Ren, Z. F.
    Chu, C. W.
    PHYSICAL REVIEW B, 2014, 89 (02):
  • [25] Basic physical properties of cubic boron arsenide
    Kang, Joon Sang
    Li, Man
    Wu, Huan
    Nguyen, Huuduy
    Hu, Yongjie
    APPLIED PHYSICS LETTERS, 2019, 115 (12)
  • [26] Determination of the Thermal Expansion Coefficient of Boron Carbide В13С2
    S. V. Konovalikhin
    D. Yu. Kovalev
    V. I. Ponomarev
    High Temperature, 2018, 56 : 668 - 672
  • [27] Studies on glass VIII The coefficient of thermal expansion of boron trioxide
    Spaght, ME
    Parks, GS
    JOURNAL OF PHYSICAL CHEMISTRY, 1934, 38 (01): : 103 - 110
  • [28] Control of coefficient of thermal expansion in elastomers using boron nitride
    Iyer, Subramanian
    Detwiler, Andrew
    Patel, Sanjay
    Schiraldi, David A.
    Journal of Applied Polymer Science, 2006, 102 (06): : 5153 - 5161
  • [29] EFFECT OF ANHARMONICITY ON THERMAL ACCOMMODATION COEFFICIENT
    FEUER, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (03): : 467 - &
  • [30] Control of coefficient of thermal expansion in elastomers using boron nitride
    Iyer, Subramanian
    Detwiler, Andrew
    Patel, Sanjay
    Schiraldi, David A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (06) : 5153 - 5161