Retinal fundus image classification for diabetic retinopathy using SVM predictions

被引:11
|
作者
Hardas, Minal [1 ]
Mathur, Sumit [1 ]
Bhaskar, Anand [1 ]
Kalla, Mukesh [1 ]
机构
[1] Sir Padampat Singhania Univ, Elect & Commun Engn, Udaipur, Rajasthan, India
关键词
Support vector machine; Diabetic retinopathy; Fundus image; Grey level co-occurrence matrix; AUTOMATED DETECTION;
D O I
10.1007/s13246-022-01143-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic Retinopathy (DR) is one of the leading causes of blindness in all age groups. Inadequate blood supply to the retina, retinal vascular exudation, and intraocular hemorrhage cause DR. Despite recent advances in the diagnosis and treatment of DR, this complication remains a challenging task for physicians and patients. Hence, a comprehensive and automated technique for DR screening is necessary, which will give early detection of this disease. The proposed work focuses on 16 class classification method using Support Vector Machine (SVM) that predict abnormalities individually or in combination based on the selected class. Our proposed work comprises Gaussian mixture model (GMM), K-means, Maximum a Posteriori (MAP) algorithm, Principal Component Analysis (PCA), Grey level co-occurrence matrix (GLCM), and SVM for disease diagnosis using DR. The proposed method provides an accuracy of 77.3% on DIARETDB1 dataset. We expect this low computational cost will be helpful in the medicine and diagnosis of DR.
引用
下载
收藏
页码:781 / 791
页数:11
相关论文
共 50 条
  • [41] Diabetic Retinopathy Binary Image Classification Using Pyspark
    Kotiyal, Bina
    Pathak, Heman
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2022, 7 (05) : 624 - 642
  • [42] Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image
    Ali, Aqib
    Qadri, Salman
    Mashwani, Wali Khan
    Kumam, Wiyada
    Kumam, Poom
    Naeem, Samreen
    Goktas, Atila
    Jamal, Farrukh
    Chesneau, Christophe
    Anam, Sania
    Sulaiman, Muhammad
    ENTROPY, 2020, 22 (05)
  • [43] Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review
    Goncalves, Mariana Batista
    Nakayama, Luis Filipe
    Ferraz, Daniel
    Faber, Hanna
    Korot, Edward
    Malerbi, Fernando Korn
    Regatieri, Caio Vinicius
    Maia, Mauricio
    Celi, Leo Anthony
    Keane, Pearse A.
    Belfort Jr, Rubens
    EYE, 2023, 38 (3) : 426 - 433
  • [44] Analysis of deep learning methods in diabetic retinopathy disease identification based on retinal fundus image
    Nurrahmadayeni
    Efendi, Syahril
    Zarlis, Muhammad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1639 - 1647
  • [45] Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review
    Mariana Batista Gonçalves
    Luis Filipe Nakayama
    Daniel Ferraz
    Hanna Faber
    Edward Korot
    Fernando Korn Malerbi
    Caio Vinicius Regatieri
    Mauricio Maia
    Leo Anthony Celi
    Pearse A. Keane
    Rubens Belfort Jr.
    Eye, 2024, 38 : 426 - 433
  • [46] Retinal Fundus Image Generation in Retinopathy of Prematurity Using Autoregressive Generative Models
    Coyner, Aaron S.
    Campbell, J. Peter
    Kalpathy-Cramer, Jayashree
    Singh, Praveer
    Sonmez, Kemal
    Chiang, Michael F.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [47] An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images
    Gharaibeh, Nasr
    Al-Hazaimeh, Obaida M.
    Al-Naami, Bassam
    Nahar, Khalid M. O.
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2018, 11 (04) : 206 - 216
  • [48] Automatic Screening and Classification of Diabetic Retinopathy Fundus Images
    Rahim, Sarni Suhaila
    Palade, Vasile
    Shuttleworth, James
    Jayne, Chrisina
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS (EANN 2014), 2014, 459 : 113 - 122
  • [49] Classification of Fundus Images for Diabetic Retinopathy Using Machine Learning: a Brief Review
    Bala, Ruchika
    Sharma, Arun
    Goel, Nidhi
    PROCEEDINGS OF ACADEMIA-INDUSTRY CONSORTIUM FOR DATA SCIENCE (AICDS 2020), 2022, 1411 : 37 - 45
  • [50] Modified capsule network for diabetic retinopathy detection and classification using fundus images
    Aswini, A. Arockia
    Sivarani, T. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5521 - 5542