Incremental Learning of Random Forests for Large-Scale Image Classification

被引:93
|
作者
Ristin, Marko [1 ]
Guillaumin, Matthieu [1 ]
Gall, Juergen [2 ]
Van Gool, Luc [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[2] Univ Bonn, Comp Vis Grp, Bonn, Germany
关键词
Incremental learning; random forests; large-scale image classification;
D O I
10.1109/TPAMI.2015.2459678
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets, where not only the amount of training data but also the number of classes increases over time, is a relatively unexplored problem. In this challenging setting, we study how two variants of Random Forests (RF) perform under four strategies to incorporate new classes while avoiding to retrain the RFs from scratch. The various strategies account for different trade-offs between classification accuracy and computational efficiency. In our extensive experiments, we show that both RF variants, one based on Nearest Class Mean classifiers and the other on SVMs, outperform conventional RFs and are well suited for incrementally learning new classes. In particular, we show that RFs initially trained with just 10 classes can be extended to 1,000 classes with an acceptable loss of accuracy compared to training from the full data and with great computational savings compared to retraining for each new batch of classes.
引用
收藏
页码:490 / 503
页数:14
相关论文
共 50 条
  • [21] An Incremental Learning framework for Large-scale CTR Prediction
    Katsileros, Petros
    Mandilaras, Nikiforos
    Mallis, Dimitrios
    Pitsikalis, Vassilis
    Theodorakis, Stavros
    Chamiel, Gil
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 490 - 493
  • [22] Landmark Classification in Large-scale Image Collections
    Li, Yunpeng
    Crandall, David J.
    Huttenlocher, Daniel P.
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1957 - 1964
  • [23] STOCHASTIC BOOSTING FOR LARGE-SCALE IMAGE CLASSIFICATION
    Pang, Juanbiao
    Huang, Qingming
    Yin, Baocai
    Qin, Lei
    Wang, Dan
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3274 - 3277
  • [24] Quantum computation for large-scale image classification
    Ruan, Yue
    Chen, Hanwu
    Tan, Jianing
    Li, Xi
    QUANTUM INFORMATION PROCESSING, 2016, 15 (10) : 4049 - 4069
  • [25] Large-Scale Insect Pest Image Classification
    Doan, Thanh-Nghi
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (02) : 328 - 341
  • [26] Quantum computation for large-scale image classification
    Yue Ruan
    Hanwu Chen
    Jianing Tan
    Xi Li
    Quantum Information Processing, 2016, 15 : 4049 - 4069
  • [27] Attention graph: Learning effective visual features for large-scale image classification
    Cui, Xuelian
    Zhang, Zhanjie
    Zhang, Tao
    Yang, Zhuoqun
    Yang, Jie
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2022, 16
  • [28] Large-scale Image Classification with Multi-perspective Deep Transfer Learning
    Wu, Bin
    Zhang, Tao
    Mao, Li
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (02) : 743 - 763
  • [29] ONLINE RANDOM FORESTS FOR LARGE-SCALE LAND-USE CLASSIFICATION FROM POLARIMETRIC SAR IMAGES
    Haensch, Ronny
    Hellwich, Olaf
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5808 - 5811
  • [30] Evaluation of Random Forests on large-scale classification problems using a Bag-of-Visual-Words representation
    Sole, Xavier
    Ramisa, Arnau
    Torras, Carme
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT: RECENT ADVANCES AND APPLICATIONS, 2014, 269 : 273 - 276