Fractional-order controllability of multi-agent systems with time-delay

被引:17
|
作者
Liu, Bo [1 ,2 ]
Su, Housheng [3 ]
Wu, Licheng [1 ]
Li, Xiali [1 ]
Lu, Xue [4 ]
机构
[1] Minzu Univ China, Sch Informat Engn, Beijing 100081, Peoples R China
[2] Wuchang Univ Technol, Artificial Intelligence Sch, Wuhan 430223, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Imaging Proc & Intelligence, Wuhan 430074, Peoples R China
[4] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order controllability; MASs; Time-delay; 2ND-ORDER CONTROLLABILITY; LINEAR-SYSTEMS; CONSENSUS;
D O I
10.1016/j.neucom.2020.04.083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generally, nature is understood and explored from the point of view of integer order, however, lots of physical systems in complex practical environments can exhibit the fractional-order (non-integer order) dynamics, which can better reveal the essential properties, behaviors and the law of basic development. A novel fractional-order model with time-delay is built and the fractional-order controllability problem of networked multi-agent systems (MASs) is discussed. Comparing with the integer-order controllability problem for MASs, the fractional-order controllability problem of MASs not only needs to consider the dynamics of the agent itself, the communication and connection between the agents and the protocols followed by the evolution of the agent undefined state, but also to consider the order number of MASs. It is also shown that the fractional-order controllability of MASs with time-delay only lies on the communication interaction from the leaders to followers and the order number of such system, but time-delay has no effect on the controllability via the controllable rank criterion. Some computationally efficient conditions of the fractional-order controllability for MASs with time-delay are obtained based on fixed and switching topologies, respectively. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:268 / 277
页数:10
相关论文
共 50 条
  • [21] Positive consensus of fractional-order multi-agent systems
    Chen, Siyu
    An, Qing
    Ye, Yanyan
    Su, Housheng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16139 - 16148
  • [22] Multiconsensus of fractional-order uncertain multi-agent systems
    Chen, Jie
    Guan, Zhi-Hong
    Li, Tao
    Zhang, Ding-Xue
    Ge, Ming-Feng
    Zheng, Ding-Fu
    NEUROCOMPUTING, 2015, 168 : 698 - 705
  • [23] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [24] Robust stabilizing regions of fractional-order PDμ controllers of time-delay fractional-order systems
    Gao, Zhe
    Yan, Ming
    Wei, Junxiu
    JOURNAL OF PROCESS CONTROL, 2014, 24 (01) : 37 - 47
  • [25] Analysis of positive fractional-order neutral time-delay systems
    Huseynov, Ismail T.
    Mahmudov, Nazim, I
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (01): : 294 - 330
  • [26] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    HAO Yilin
    HUANG Chengdai
    CAO Jinde
    LIU Heng
    Journal of Systems Science & Complexity, 2022, 35 (06) : 2181 - 2207
  • [27] Stability analysis of time-delay incommensurate fractional-order systems
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
  • [28] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    Yilin Hao
    Chengdai Huang
    Jinde Cao
    Heng Liu
    Journal of Systems Science and Complexity, 2022, 35 : 2181 - 2207
  • [29] Convergence of Fractional-order Discrete-time Multi-agent Systems with A Leader
    Liu Bo
    Han Xiao
    Zhang Junjun
    Sun Dehui
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 7322 - 7326
  • [30] Containment control for fractional-order multi-agent systems with mixed time delays
    Liu, Song
    Fu, Xinyu
    Zhao, Xiao-Wen
    Pang, Denghao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) : 3176 - 3186