Time-varying metasurfaces and Lorentz non-reciprocity

被引:269
|
作者
Shaltout, Amr [1 ]
Kildishev, Alexander [1 ]
Shalaev, Vladimir [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
来源
OPTICAL MATERIALS EXPRESS | 2015年 / 5卷 / 11期
基金
美国国家科学基金会;
关键词
BROAD-BAND; PLASMONIC METASURFACES; LIGHT-PROPAGATION; VISIBLE-LIGHT; HOLOGRAMS; REFLECTION; REFRACTION; REVERSAL; LAWS;
D O I
10.1364/OME.5.002459
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A cornerstone equation of optics - Snell's law - relates the angles of incidence and refraction for light passing through an interface between two media. It is built on two fundamental constraints: the conservation of tangential momentum and the conservation of energy. By relaxing the classical Snell's law photon momentum conservation constraint when using space-gradient phase discontinuity, optical metasurfaces enabled an entirely new class of ultrathin optical devices. Here, we show that by eradicating the photon energy conservation constraint when introducing time-gradient phase discontinuity, we can further empower the area of flat photonics and obtain a new genus of optical devices. With this approach, classical Snell's relations are developed into a more universal form not limited by Lorentz reciprocity, hence, meeting all the requirements for building magnetic-free optical isolators. Furthermore, photons experience inelastic interaction with time-gradient metasurfaces, which modifies photonic energy eigenstates and results in a Doppler-like wavelength shift. Consequently, metasurfaces with both space-and time-gradients can have a strong impact on a plethora of photonic applications and provide versatile control over the physical properties of light. (C) 2015 Optical Society of America
引用
收藏
页码:2459 / 2467
页数:9
相关论文
共 50 条
  • [41] Non-reciprocity across scales in active mixtures
    Alberto Dinelli
    Jérémy O’Byrne
    Agnese Curatolo
    Yongfeng Zhao
    Peter Sollich
    Julien Tailleur
    Nature Communications, 14
  • [42] Noiseless non-reciprocity in a parametric active device
    Kamal, Archana
    Clarke, John
    Devoret, M. H.
    NATURE PHYSICS, 2011, 7 (04) : 311 - 315
  • [43] Engineering static non-reciprocity in mechanical metamaterials
    Wang, Jinliang
    Ji, Qingxiang
    Kadic, Muamer
    Wang, Changguo
    THIN-WALLED STRUCTURES, 2024, 205
  • [44] Coherent optical non-reciprocity in axisymmetric resonators
    Lenferink, Erik J.
    Wei, Guohua
    Stern, Nathaniel P.
    OPTICS EXPRESS, 2014, 22 (13): : 16099 - 16111
  • [45] Doherty Load Modulation Based on Non-Reciprocity
    Saad, Paul
    Zhou, Han
    Perez-Cisneros, Jose-Ramon
    Hou, Rui
    Fager, Christian
    Berglund, Bo
    2021 51st European Microwave Conference, EuMC 2021, 2021, : 938 - 941
  • [46] Wave non-reciprocity at a nonlinear structural interface
    Keegan J. Moore
    Alexander F. Vakakis
    Acta Mechanica, 2018, 229 : 4057 - 4070
  • [47] Noiseless non-reciprocity in a parametric active device
    Kamal A.
    Clarke J.
    Devoret M.H.
    Nature Physics, 2011, 7 (4) : 311 - 315
  • [48] Wave non-reciprocity at a nonlinear structural interface
    Moore, Keegan J.
    Vakakis, Alexander F.
    ACTA MECHANICA, 2018, 229 (10) : 4057 - 4070
  • [49] OPTICAL PHYSICS Broadband optomechanical non-reciprocity
    Seif, Alireza
    Hafezi, Mohammad
    NATURE PHOTONICS, 2018, 12 (02) : 60 - 61
  • [50] Non-reciprocity in a silicon photonic ring resonator with time-modulated regions
    Zarif, Arezoo
    Jamshidi, Kambiz
    OPTICS EXPRESS, 2024, 32 (15): : 26938 - 26953