NONCOMMUTATIVE BISPECTRAL DARBOUX TRANSFORMATIONS

被引:8
|
作者
Geiger, Joel [1 ]
Horozov, Emil [2 ,3 ]
Yakimov, Milen [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Sofia Univ, Dept Math & Informat, 5 J Bourchier Blvd, Sofia 1126, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[4] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
The noncommutative bispectral problem; Darboux transformations; matrix rank one bispectral functions; the Airy bispectral function; ORDINARY DIFFERENTIAL-OPERATORS; VALUED ORTHOGONAL POLYNOMIALS; SPECTRAL PARAMETER; EQUATIONS; ALGEBRA; PARTICLES; BOCHNER; VERSION;
D O I
10.1090/tran/6950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general theorem establishing the bispectrality of noncommutative Darboux transformations. It has a wide range of applications that establish bispectrality of such transformations for differential, difference and q-difference operators with values in all noncommutative algebras. All known bispectral Darboux transformations are special cases of the theorem. Using the methods of quasideterminants and the spectral theory of matrix polynomials, we explicitly classify the set of bispectral Darboux transformations from rank one differential operators and Airy operators with values in matrix algebras. These sets generalize the classical Calogero-Moser spaces and Wilson's adelic Grassmannian.
引用
收藏
页码:5889 / 5919
页数:31
相关论文
共 50 条