An analysis of Ruspini partitions in Godel logic

被引:10
|
作者
Codara, Pietro [1 ]
D'Antona, Ottavio M. [2 ]
Marra, Vincenzo [2 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Informat & Comunicaz, I-20135 Milan, Italy
关键词
Fuzzy set; Ruspini partition; Godel logic; ALGEBRAS;
D O I
10.1016/j.ijar.2009.02.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By a Ruspini partition we mean a finite family of fuzzy sets {f(1,) ... ,f(n)} f(i) : [0,1] -> [0, 1]. such that Sigma(n)(i-1)f(i)(x) = 1 for all x is an element of [0, 1], where [0, 1] denotes the real unit interval. We analyze such partitions in the language of Godel logic. Our first main result identifies the precise degree to which the Ruspini condition is expressible in this language, and yields inter alia a constructive procedure to axiomatize a given Ruspini partition by a theory in Godel logic. Our second main result extends this analysis to Ruspini partitions fulfilling the natural additional condition that each f(i) has at most one left and one right neighbour, meaning that min(x is an element of,0.1) {fi(1) (x), fi(2) (x), fi(3) (x)} = 0 holds for i(1) not equal i(2) not equal i(3). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:825 / 836
页数:12
相关论文
共 50 条
  • [21] Exploring Extensions of Possibilistic Logic over Godel Logic
    Dellunde, Pilar
    Godo, Lluis
    Marchioni, Enrico
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 923 - +
  • [22] Nonboolean partitions and their logic
    D. Mundici
    Soft Computing, 1998, 2 (1) : 18 - 22
  • [23] Godel's demons - Logic and folly
    Kantor, Jean-Michel
    QUINZAINE LITTERAIRE, 2007, (956): : 25 - 25
  • [24] On Logic Embeddings and Godel's God
    Benzmueller, Christoph
    Paleo, Bruno Woltzenlogel
    RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES (WADT 2014), 2015, 9463 : 3 - 6
  • [25] The Demons of Godel. Logic and foolishness
    Zalamea, Fernando
    BOLETIN DE MATEMATICAS, 2009, 16 (01): : 79 - 81
  • [26] A DPLL PROCEDURE FOR THE PROPOSITIONAL GODEL LOGIC
    Guller, Dusan
    ICFC 2010/ ICNC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION AND INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION, 2010, : 31 - 42
  • [27] Hyperresolution for Godel logic with truth constants
    Guller, Dusan
    FUZZY SETS AND SYSTEMS, 2019, 363 : 1 - 65
  • [28] The Euler Characteristic of a Formula in Godel Logic
    Codara, Pietro
    D'Antona, Ottavio M.
    Marra, Vincenzo
    40TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC ISMVL 2010, 2010, : 108 - 112
  • [29] A Resolution Mechanism for Prenex Godel Logic
    Baaz, Matthias
    Fermueller, Christian G.
    COMPUTER SCIENCE LOGIC, 2010, 6247 : 67 - 79
  • [30] Proof Systems for a Godel Modal Logic
    Metcalfe, George
    Olivetti, Nicola
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 265 - +