NONCONFORMING MULTISCALE FINITE ELEMENT METHOD FOR STOKES FLOWS IN HETEROGENEOUS MEDIA. PART I: METHODOLOGIES AND NUMERICAL EXPERIMENTS
被引:13
|
作者:
Muljadi, B. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, FranceUniv Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
Muljadi, B. P.
[1
,2
]
Narski, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, FranceUniv Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
Narski, J.
[1
,2
]
Lozinski, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Franche Comte, CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, FranceUniv Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
Lozinski, A.
[3
]
Degond, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, FranceUniv Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
Degond, P.
[1
,2
]
机构:
[1] Univ Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, France
[3] Univ Franche Comte, CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
The multiscale finite element method (MsFEM) is developed in the vein of the Crouzeix-Raviart element for solving viscous incompressible flows in genuine heterogeneous media. Such flows are relevant in many branches of engineering, often at multiple scales and at regions where analytical representations of the microscopic features of the flows are often unavailable. Full accounts of these problems heavily depend on the geometry of the system under consideration and are computationally expensive. Therefore, a method capable of solving multiscale features of the flow without confining itself to fine scale calculations is sought. The approximation of boundary condition on coarse element edges when computing the multiscale basis functions critically influences the eventual accuracy of any MsFEM approaches. The weakly enforced continuity of Crouzeix-Raviart function space across element edges leads to a natural boundary condition for the multiscale basis functions which relaxes the sensitivity of our method to complex patterns of obstacles exempt from the need to implement any oversampling techniques. Additionally, the application of a penalization method makes it possible to avoid a complex unstructured domain and allows extensive use of simpler Cartesian meshes.
机构:
Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA
Gao, Kai
Fu, Shubin
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA
Fu, Shubin
Gibson, Richard L., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA
Gibson, Richard L., Jr.
Chung, Eric T.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaTexas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA
Chung, Eric T.
Efendiev, Yalchin
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
King Abdullah Univ Sci & Technol, Numer Porous Media SRI Ctr NumPor, Thuwal, Saudi ArabiaTexas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA