A Lagrange Multiplier Method for Distributed Optimization Based on Multi-Agent Network With Private and Shared Information

被引:1
|
作者
Zhao, Yan [1 ]
Liu, Qingshan [2 ,3 ]
机构
[1] Wannan Med Coll, Sch Common Courses, Wuhu 241000, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Jiangsu Prov Key Lab Networked Collect Intelligen, Nanjing 210096, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Distributed optimization; Lagrange multiplier; multi-agent network; convergence; PROJECTION NEURAL-NETWORKS; VARIATIONAL-INEQUALITIES; CONSTRAINED CONSENSUS; NEURODYNAMIC APPROACH; CONVEX-OPTIMIZATION; SYSTEM; ALGORITHMS;
D O I
10.1109/ACCESS.2019.2924590
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a Lagrange multiplier method is investigated for designing distributed optimization algorithm, which convergence is analyzed from the view of multi-agent networks with connected graphs. In the network, each agent is with both private and shared information. The shared information is shared with the agent's neighbors via a network with a connected graph. Furthermore, a Lagrange-multiplierbased algorithm with parallel computing architecture is designed for distributed optimization. Under mild conditions, the convergence of the algorithm, corresponding to the consensus of the Lagrange multipliers, is presented and proved. The experiments with simulations are presented to illustrate the performance of the proposed method.
引用
收藏
页码:83297 / 83305
页数:9
相关论文
共 50 条
  • [31] Differentially Private Cloud-Based Multi-Agent Optimization with Constraints
    Hale, M. T.
    Egerstedt, M.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1235 - 1240
  • [32] Distributed hybrid optimization for multi-agent systems
    XueGang Tan
    Yang Yuan
    WangLi He
    JinDe Cao
    TingWen Huang
    Science China Technological Sciences, 2022, 65 : 1651 - 1660
  • [33] Distributed hybrid optimization for multi-agent systems
    Tan XueGang
    Yuan Yang
    He WangLi
    Cao JinDe
    Huang TingWen
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (08) : 1651 - 1660
  • [34] Neurodynamic approaches for multi-agent distributed optimization
    Guo, Luyao
    Korovin, Iakov
    Gorbachev, Sergey
    Shi, Xinli
    Gorbacheva, Nadezhda
    Cao, Jinde
    NEURAL NETWORKS, 2024, 169 : 673 - 684
  • [35] Distributed hybrid optimization for multi-agent systems
    TAN XueGang
    YUAN Yang
    HE WangLi
    CAO JinDe
    HUANG TingWen
    Science China(Technological Sciences), 2022, 65 (08) : 1651 - 1660
  • [36] Distributed optimization via multi-agent systems
    Wang L.
    Lu K.-H.
    Guan Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2019, 36 (11): : 1820 - 1833
  • [37] Distributed hybrid optimization for multi-agent systems
    TAN XueGang
    YUAN Yang
    HE WangLi
    CAO JinDe
    HUANG TingWen
    Science China(Technological Sciences), 2022, (08) : 1651 - 1660
  • [38] Distributed Subgradient Methods for Multi-Agent Optimization
    Nedic, Angelia
    Ozdaglar, Asurrian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (01) : 48 - 61
  • [39] Multi-agent based distributed reactive power control method
    Nagata, Takeshi
    Kunisa, Daisuke
    Saiki, Hiroshi
    Hatano, Ryousuke
    IEEJ Transactions on Power and Energy, 2009, 129 (08) : 1039 - 1046
  • [40] Method of distributed model management and combination based on multi-agent
    Chu, Hongxia
    Wang, Kejun
    Liu, Xia
    Li, Zhanying
    Liu, Baisen
    IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 820 - +