The classification of symplectic structures of convex type

被引:4
|
作者
Neumann, A [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math AG 5, D-64289 Darmstadt, Germany
关键词
symplectic module; symplectic module of convex type; invariant cone; Lie algebra;
D O I
10.1023/A:1005260629187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a classification of a certain class of semisimple symplectic structures, more precisely all symplectic structures Omega for which a symplectic module (V,Omega) is of convex type. This classification then leads to a classification of Lie algebras with invariant cones and at most one dimensional center.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 50 条
  • [31] Uniqueness of symplectic structures
    Dietmar Salamon
    [J]. Acta Mathematica Vietnamica, 2013, 38 (1) : 123 - 144
  • [32] BOTT-TYPE SYMPLECTIC FLOER COHOMOLOGY AND ITS MULTIPLICATION STRUCTURES
    Ruan, Yongbin
    Tian, Gang
    [J]. MATHEMATICAL RESEARCH LETTERS, 1995, 2 (02) : 203 - 219
  • [33] Locally conformal symplectic structures on Lie algebras of type I and their solvmanifolds
    Origlia, Marcos
    [J]. FORUM MATHEMATICUM, 2019, 31 (03) : 563 - 578
  • [34] SHIFTED SYMPLECTIC STRUCTURES
    Pantev, Tony
    Toen, Bertrand
    Vaquie, Michel
    Vezzosi, Gabriele
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 271 - 328
  • [35] SYMPLECTIC SPINOR STRUCTURES
    CRUMEYROLLE, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (11): : 583 - 586
  • [36] UNIQUENESS OF SYMPLECTIC STRUCTURES
    Salamon, Dietmar
    [J]. ACTA MATHEMATICA VIETNAMICA, 2013, 38 (01) : 123 - 144
  • [37] Shifted symplectic structures
    Tony Pantev
    Bertrand Toën
    Michel Vaquié
    Gabriele Vezzosi
    [J]. Publications mathématiques de l'IHÉS, 2013, 117 : 271 - 328
  • [38] Quasi-morphisms and Symplectic Quasi-states for Convex Symplectic Manifolds
    Lanzat, Sergei
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (23) : 5321 - 5365
  • [39] Multisymplectic structures induced by symplectic structures
    Barron, Tatyana
    Shafiee, Mohammad
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 136 : 1 - 13
  • [40] Convex Polytopes and Quasilattices from the Symplectic Viewpoint
    Fiammetta Battaglia
    [J]. Communications in Mathematical Physics, 2007, 269 : 283 - 310