Stationary solitary and kink solutions in the helicoidal Peyrard-Bishop model of DNA molecule

被引:8
|
作者
Zdravkovic, S. [1 ]
Chevizovich, D. [1 ]
Bugay, A. N. [2 ]
Maluckov, A. [1 ]
机构
[1] Univ Beogradu, Inst Nukl Nauke Vinca, Belgrade 11001, Serbia
[2] Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
TRAVELING-WAVE SOLUTIONS; SIMPLEST EQUATION METHOD; TANH-FUNCTION METHOD; NONLINEAR DYNAMICS; CHAIN MODEL; EXCITATIONS; SOLITONS; MECHANISM;
D O I
10.1063/1.5090962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear dynamics of the DNA molecule relying on a helicoidal Peyrard-Bishop model. We look for traveling wave solutions and show that a continuum approximation brings about kink solitons moving along the chain. This statement is supported by the numerical solution of a relevant dynamical equation of motion. Finally, we argue that an existence of both kinks and localized modulated solitons (breathers) could be a useful tool to describe DNA-RNA transcription.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] HELICOIDAL PEYRARD-BISHOP MODEL OF DNA DYNAMICS
    Zdravkovic, Slobodan
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2011, 18 : 463 - 484
  • [2] On the discrete Peyrard-Bishop model of DNA: Stationary solutions and stability
    Cuenda, Sara
    Sanchez, Angel
    CHAOS, 2006, 16 (02)
  • [3] New variety diverse solitary wave solutions to the DNA Peyrard-Bishop model
    Zahran, Emad H. M.
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2023, 37 (13):
  • [4] LOCALIZED BREATHER-LIKE EXCITATIONS IN THE HELICOIDAL PEYRARD-BISHOP MODEL OF DNA
    Tabi, Conrad Bertrand
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2009, 2 (04) : 405 - 417
  • [5] Mean Lyapunov exponent approach for the helicoidal Peyrard-Bishop model
    Behnia, S.
    Panahi, M.
    Akhshani, A.
    Mobaraki, A.
    PHYSICS LETTERS A, 2011, 375 (41) : 3574 - 3578
  • [6] Stationary solutions for a modified Peyrard-Bishop DNA model with up to third-neighbor interactions
    Z. Rapti
    The European Physical Journal E, 2010, 32 : 209 - 216
  • [7] Stationary solutions for a modified Peyrard-Bishop DNA model with up to third-neighbor interactions
    Rapti, Z.
    EUROPEAN PHYSICAL JOURNAL E, 2010, 32 (02): : 209 - 216
  • [8] New Dynamic Multiwave Solutions of the Fractional Peyrard-Bishop DNA Model
    Tripathy, A.
    Sahoo, S.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (10):
  • [9] Energy localization in the Peyrard-Bishop DNA model
    De Luca, J
    Drigo, E
    Ponno, A
    Ruggiero, JR
    PHYSICAL REVIEW E, 2004, 70 (02): : 9
  • [10] Discrete breathers in the Peyrard-Bishop model of DNA
    Fakhretdinov, M. I.
    Zakir'yanov, F. K.
    TECHNICAL PHYSICS, 2013, 58 (07) : 931 - 935