Visualizing Near Infrared Hyperspectral Images with Generative Adversarial Networks

被引:5
|
作者
Tang, Rongxin [1 ,2 ]
Liu, Hualin [1 ]
Wei, Jingbo [1 ]
机构
[1] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Jiangxi Prov Key Lab Interdisciplinary Sci, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral images; hyperspectral visualization; convolutional neural networks; Generative Adversarial Networks; GAN; Hyperion; COLOR DISPLAY; BAND SELECTION; FUSION; DECOLORIZATION; MODEL;
D O I
10.3390/rs12233848
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The visualization of near infrared hyperspectral images is valuable for quick view and information survey, whereas methods using band selection or dimension reduction fail to produce good colors as reasonable as corresponding multispectral images. In this paper, an end-to-end neural network of hyperspectral visualization is proposed, based on the convolutional neural networks, to transform a hyperspectral image of hundreds of near infrared bands to a three-band image. Supervised learning is used to train the network where multispectral images are targeted to reconstruct naturally looking images. Each pair of the training images shares the same geographic location and similar moments. The generative adversarial framework is used with an adversarial network to improve the training of the generating network. In the experimental procedure, the proposed method is tested for the near infrared bands of EO-1 Hyperion images with LandSat-8 images as the benchmark, which is compared with five state-of-the-art visualization algorithms. The experimental results show that the proposed method performs better in producing naturally looking details and colors for near infrared hyperspectral images.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] HSGAN: Hyperspectral Reconstruction From RGB Images With Generative Adversarial Network
    Zhao, Yuzhi
    Po, Lai-Man
    Lin, Tingyu
    Yan, Qiong
    Liu, Wei
    Xian, Pengfei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 17137 - 17150
  • [22] Hierarchical Fusion of Infrared and Visible Images Based on Channel Attention Mechanism and Generative Adversarial Networks
    Wu, Jie
    Yang, Shuai
    Wang, Xiaoming
    Pei, Yu
    Wang, Shuai
    Song, Congcong
    SENSORS, 2024, 24 (21)
  • [23] Generative Adversarial Networks for anomaly detection in aerial images
    Contreras-Cruz, Marco A.
    Correa-Tome, Fernando E.
    Lopez-Padilla, Rigoberto
    Ramirez-Paredes, Juan-Pablo
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [24] Learning to Distort Images Using Generative Adversarial Networks
    Chen, Li-Heng
    Bampis, Christos G.
    Li, Zhi
    Bovik, Alan C.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 2144 - 2148
  • [25] Robust Semantic Transmission of Images with Generative Adversarial Networks
    He, Qi
    Yuan, Haohan
    Feng, Daquan
    Che, Bo
    Chen, Zhi
    Xia, Xiang-Gen
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3953 - 3958
  • [26] Attribute Manipulation Generative Adversarial Networks for Fashion Images
    Ak, Kenan E.
    Lim, Joo Hwee
    Tham, Jo Yew
    Kassim, Ashraf A.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10540 - 10549
  • [27] Generative adversarial networks for extrapolation of corrosion in automobile images
    Von Zuben, Andre
    Viana, Felipe A. C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [28] Anonymizing Personal Images Using Generative Adversarial Networks
    Piacentino, Esteban
    Angulo, Cecilio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2020), 2020, 12108 : 395 - 405
  • [29] Deep generative adversarial networks for infrared image enhancement
    Guei, Axel-Christian
    Akhloufi, Moulay A.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XL, 2018, 10661
  • [30] Infrared Image Deblurring Based on Generative Adversarial Networks
    Zhao, Yuqing
    Fu, Guangyuan
    Wang, Hongqiao
    Zhang, Shaolei
    Yue, Min
    INTERNATIONAL JOURNAL OF OPTICS, 2021, 2021