Cu(0)-RDRP of acrylates based on p-type organic semiconductors

被引:26
|
作者
Sauve, Ethan R. [1 ]
Tonge, Christopher M. [1 ]
Paisley, Nathan R. [1 ]
Cheng, Susan [1 ]
Hudson, Zachary M. [1 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
关键词
LIVING RADICAL POLYMERIZATION; LIGHT-EMITTING-DIODES; SET-LRP; POLYMERS; METHACRYLATES; PERFORMANCE; COPOLYMERS; MIXTURES; KINETICS; PLATFORM;
D O I
10.1039/c8py00295a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A series of four acrylic monomers were synthesized based on p-type organic semiconductor motifs found commonly in organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs) and organic photovoltaics (OPVs). These monomers are readily polymerized by a facile Cu(0) reversible deactivation radical polymerization (RDRP) procedure at room temperature, the kinetics of which are described in detail. The title polymers were obtained in high yield with low polydispersities, and display first-order polymerization kinetics up to high monomer conversion (93%). The optical, electrochemical and thermal properties for each of these p-type materials are also described. Overall, these methods provide a simple and low-cost route to well-defined materials with promise for applications in organic electronic devices.
引用
收藏
页码:1397 / 1403
页数:7
相关论文
共 50 条
  • [31] Metal based sulfides, p-type semiconductors in solid state solar cells
    Manolache, S. A.
    Isac, L. A.
    Duta, A.
    Kriza, A.
    Nanu, M.
    2006 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, 2007, : 141 - +
  • [32] Superstructures Based upon n- and p-Type Organic Semiconductors: Toward Light-Emitting Device Applications
    Hayashi, Waka
    Terasaki, Kohei
    Kajiwara, Kentaro
    Yamao, Takeshi
    Hotta, Shu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (08)
  • [33] Investigation of biphenyl enamines for applications as p-type semiconductors
    Steponaitis, Matas
    Jankauskas, Vygintas
    Kamarauskas, Egidijus
    Malinauskiene, Vida
    Karazhanov, Smagul
    Malinauskas, Tadas
    Getautis, Vytautas
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (07):
  • [34] COMPUTATION OF THE MOBILITY RATIO IN PURE P-TYPE SEMICONDUCTORS
    NUSSBAUM, A
    PHYSICAL REVIEW, 1954, 96 (03): : 828 - 828
  • [35] Hydrogen impurities in p-type semiconductors, GeS and GeTe
    Nakamura, Jumpei G.
    Kawakita, Yukinobu
    Shimomura, Koichiro
    Suemasu, Takashi
    Journal of Applied Physics, 2021, 130 (19):
  • [36] BOUND MAGNETIC POLARON IN P-TYPE SEMIMAGNETIC SEMICONDUCTORS
    BERKOVSKAYA, JF
    GELMONT, BL
    MERKULOV, IA
    ACTA PHYSICA POLONICA A, 1988, 74 (06) : 797 - 801
  • [37] RATE OF PHOTOELECTROCHEMICAL GENERATION OF HYDROGEN AT P-TYPE SEMICONDUCTORS
    BOCKRIS, JOM
    UOSAKI, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (09) : 1348 - 1355
  • [38] Thieno[3,2-b]thiophene oligomers and their applications as p-type organic semiconductors
    Ahmed, Moawia O.
    Wang, Chunmei
    Keg, Peisi
    Pisula, Wojciech
    Lam, Yeng-Meng
    Ong, Beng S.
    Ng, Siu-Choon
    Chen, Zhi-Kuan
    Mhaisalkar, Subodh G.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (21) : 3449 - 3456
  • [39] Photoelectrochemical Kinetics: Hydrogen Evolution on p-Type Semiconductors
    Peter, Laurence
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (05) : H3125 - H3132
  • [40] PHONON ATTENUATION IN HEAVILY DOPED P-TYPE SEMICONDUCTORS
    SOTA, T
    SUZUKI, K
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (15): : 2661 - 2680