Variational Iteration Method for Infrared Radiative Transfer in a Scattering Medium

被引:23
|
作者
Zhang, Feng [1 ,2 ,3 ]
Shi, Yi-Ning [2 ]
Li, Jiangnan [4 ]
Wu, Kun [2 ]
Iwabuchi, Hironobu [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Minist Educ, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Jiangsu, Peoples R China
[3] Tohoku Univ, Grad Sch Sci, Ctr Atmospher & Ocean Studies, Sendai, Miyagi, Japan
[4] Univ Victoria, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
MULTIPLE-SCATTERING; LAYERED MEDIA; PARAMETERIZATION; CLOUDS; ALGORITHM; ACCURACY; 2-STREAM; FLUXES;
D O I
10.1175/JAS-D-16-0172.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Anew scheme is proposed for using the variational iteration method (VIM) to solve the problem of infrared radiative transfer in a scattering medium. This scheme allows the zeroth-order solution to be identified as the absorption approximation and the scattering effect is included in the first-order iteration. The upward and downward intensities are calculated separately in VIM, which simplifies the calculation process. By applying VIM to two single-layer scattering media and a full radiation algorithm with gaseous transmission, it is found that VIM is generally more accurate than the discrete-ordinates method (DOM), especially for cirrostratus. Computationally, VIM is slightly faster than DOM in the two-stream case but more than twice as fast in the four-stream case. In view of its high overall accuracy and computational efficiency, VIM is well suited to solving infrared radiative transfer in climate models.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条