Multiple Sigma-point Kalman Smoothers for High-dimensional State-Space Models

被引:0
|
作者
Vila-Valls, Jordi [1 ]
Closas, Pau [2 ]
Garcia-Fernandez, Angel F. [3 ]
Fernandez-Prades, Carles [1 ]
机构
[1] CERCA, CTTC, Barcelona 08860, Spain
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool, Merseyside, England
关键词
QUADRATURE; FILTERS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a new multiple state partitioning solution to the Bayesian smoothing problem in nonlinear high-dimensional Gaussian systems. The key idea is to partition the original state into several low-dimensional subspaces, and apply an individual smoother to each of them. The main goal is to reduce the state dimension each filter has to explore, to reduce the curse of dimensionality and eventual loss of accuracy. We provide the theoretical multiple smoothing formulation and a new nested sigma-point approximation to the resulting smoothing solution. The performance of the new approach is shown for the 40-dimensional Lorenz model.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] A Lagged Particle Filter for Stable Filtering of Certain High-Dimensional State-Space Models
    Ruzayqat, Hamza
    Er-raiy, Aimad
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kantas, Nikolas
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1130 - 1161
  • [12] Factor state-space models for high-dimensional realized covariance matrices of asset returns
    Gribisch, Bastian
    Hartkopf, Jan Patrick
    Liesenfeld, Roman
    [J]. JOURNAL OF EMPIRICAL FINANCE, 2020, 55 : 1 - 20
  • [13] Comparison of Sigma-Point Filters for State Estimation of Diabetes Models
    Szalay, Peter
    Molnar, Adrienn
    Mueller, Mark
    Eigner, Gyoergy
    Rudas, Imre
    Benyo, Zoltan
    Kovacs, Levente
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2476 - 2481
  • [14] KALMAN FILTERING ON APPROXIMATE STATE-SPACE MODELS
    RUIZ, JC
    VALDERRAMA, MJ
    GUTIERREZ, R
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (02) : 415 - 431
  • [15] Gaussian Flow Sigma Point Filter for Nonlinear Gaussian State-Space Models
    Nurminen, Henri
    Piche, Robert
    Godsill, Simon
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 445 - 452
  • [16] Adaptive Sigma-Point Kalman Filtering for Wind Turbine State and Process Noise Estimation
    Ritter, B.
    Mora, E.
    Schlicht, T.
    Schild, A.
    Konigorski, U.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [17] Efficient Kalman smoothing for harmonic state-space models
    Barber, David
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2979 - 2982
  • [18] A hybrid approach for bioprocess state estimation using NIR spectroscopy and a sigma-point Kalman filter
    Kraemer, D.
    King, R.
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 82 : 91 - 104
  • [19] Gaussian Variational Approximations for High-dimensional State Space Models
    Quiroz, Matias
    Nott, David J.
    Kohn, Robert
    [J]. BAYESIAN ANALYSIS, 2023, 18 (03): : 989 - 1016
  • [20] State-space models with finite dimensional dependence
    Gourieroux, C
    Jasiak, J
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (06) : 665 - 678