Discriminative training and maximum entropy models for statistical machine translation

被引:0
|
作者
Och, FJ [1 ]
Ney, H [1 ]
机构
[1] Rhein Westfal TH Aachen, Rhein Westfal TH Aachen, Dept Comp Sci, Lehrstuhl Informat 6, D-52056 Aachen, Germany
来源
40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source-channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language sentence, the target language sentence and possible hidden variables. This approach allows a baseline machine translation system to be extended easily by adding new feature functions. We show that a baseline statistical machine translation system is significantly improved using this approach.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [31] Iterative Training of Unsupervised Neural and Statistical Machine Translation Systems
    Marie, Benjamin
    Fujita, Atsushi
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (05)
  • [32] A maximum entropy approach for integrating semantic information in statistical language models
    Chueh, CH
    Chien, JT
    Wang, HM
    2004 International Symposium on Chinese Spoken Language Processing, Proceedings, 2004, : 309 - 312
  • [33] Combining Statistical Language Models via the Latent Maximum Entropy Principle
    Shaojun Wang
    Dale Schuurmans
    Fuchun Peng
    Yunxin Zhao
    Machine Learning, 2005, 60 : 229 - 250
  • [34] Combining statistical language models via the latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    MACHINE LEARNING, 2005, 60 (1-3) : 229 - 250
  • [35] Statistical Alignment Models in Machine Translation from Slovenian to English
    Maucec, Mirjam Sepesy
    Brest, Janez
    Kaic, Zdravko
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2006, 73 (05): : 273 - 278
  • [36] Statistical alignment models in machine translation from Slovenian to English
    University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, Maribor, Slovenia
    Elektroteh Vestn Electrotech Rev, 2006, 5 (273-278):
  • [37] Compositions of Tree-to-Tree Statistical Machine Translation Models
    Maletti, Andreas
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (05) : 877 - 892
  • [38] Compositions of Tree-to-Tree Statistical Machine Translation Models
    Maletti, Andreas
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 293 - 305
  • [39] Phrase-based alignment models for statistical machine translation
    Tomás, J
    Lloret, J
    Casacuberta, F
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 605 - 613
  • [40] Maximum Entropy Modeling: A Suitable Framework to Learn Context-Dependent Lexicon Models for Statistical Machine TranslationBasic Instructions
    Ismael García-Varea
    Francisco Casacuberta
    Machine Learning, 2005, 60 : 135 - 158