GAS PLUME DETECTION AND TRACKING IN HYPERSPECTRAL VIDEO SEQUENCES USING BINARY PARTITION TREES

被引:0
|
作者
Tochon, G. [1 ]
Chanussot, J. [1 ,4 ]
Gilles, J. [2 ]
Dalla Mura, M. [1 ]
Chang, J-M. [3 ]
Bertozzi, A. L. [2 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, St Martin Dheres, France
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[3] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
[4] Univ Iceland, Dept Elect & Comp Engn, Reykjavik, Iceland
基金
美国国家科学基金会;
关键词
segmentation; tracking; Binary Partition Tree; chemical gas plume; hyperspectral video sequence; REPRESENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences are particularly suited for the detection and tracking of chemical gas plumes. However, the processing of this new type of video sequences with the additional spectral diversity, is challenging and requires the design of advanced image processing algorithms. In this paper, we present a novel method for the segmentation and tracking of a chemical gas plume diffusing in the atmosphere, recorded in a hyperspectral video sequence. In the proposed framework, the position of the plume is first estimated, using the temporal redundancy of two consecutive frames. Second, a Binary Partition Tree is built and pruned according to the previous estimate, in order to retrieve the real location and extent of the plume in the frame. The proposed method is validated on a real hyperspectral video sequence and compared with a state-of-the-art method.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] POLSAR TIME SERIES TEMPORAL CHANGE DETECTION AND ANALYSIS WITH BINARY PARTITION TREES
    Alonso-Gonzalez, Alberto
    Lopez-Martinez, Carlos
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2321 - 2324
  • [32] Multiple Objects Tracking Under Occlusion Detection in Video Sequences
    Gaur, Sanjay
    Degadwala, Sheshang
    Mahajan, Arpana
    [J]. EMERGING TRENDS IN EXPERT APPLICATIONS AND SECURITY, 2019, 841 : 189 - 196
  • [33] Detection and Tracking of Moving Targets for Thermal Infrared Video Sequences
    Li, Chenming
    Wang, Wenguang
    [J]. SENSORS, 2018, 18 (11)
  • [34] Detection and Tracking of Livestock Herds from Aerial Video Sequences
    Guillen-Garde, Sara
    Lopez-Nicolas, Gonzalo
    Aragues, Rosario
    [J]. ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 423 - 434
  • [35] Real-time Object Detection and Tracking in Video Sequences
    Dornaika, F.
    Chakik, F.
    [J]. INTELLIGENT ROBOTS AND COMPUTER VISION XXVII: ALGORITHMS AND TECHNIQUES, 2010, 7539
  • [36] Moving Object Detection and Tracking in Traffic Surveillance Video Sequences
    Gajbhiye, Pranjali
    Cheggoju, Naveen
    Satpute, Vishal R.
    [J]. RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 117 - 128
  • [37] TARGET TRACKING IN VIDEO SEQUENCES USING WAVELET TRANSFORM
    Arivazhagan, S.
    Jebarani, W. Sylvia Lilly
    Kumaran, G.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (05) : 675 - 690
  • [38] Tracking people in video sequences using multiple models
    Manuel Lucena
    José M. Fuertes
    Nicolás Pérez de la Blanca
    Manuel J. Marín-Jiménez
    [J]. Multimedia Tools and Applications, 2010, 49 : 371 - 403
  • [39] Tracking people in video sequences using multiple models
    Lucena, Manuel
    Fuertes, Jose M.
    Perez de la Blanca, Nicolas
    Marin-Jimenez, Manuel J.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2010, 49 (02) : 371 - 403
  • [40] Smoke detection in video sequences based on dynamic texture using volume local binary patterns
    Lin, Gaohua
    Zhang, Yongming
    Zhang, Qixing
    Jia, Yang
    Xu, Gao
    Wang, Jinjun
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (11): : 5522 - 5536