In-Memory Flow-Based Stochastic Computing on Memristor Crossbars using Bit-Vector Stochastic Streams

被引:0
|
作者
Raj, Sunny [1 ]
Chakraborty, Dwaipayan [1 ]
Jha, Sumit Kumar [1 ]
机构
[1] Univ Cent Florida, Comp Sci Dept, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths - a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in memory nanoscale memristive crossbar computing framework.
引用
收藏
页码:855 / 860
页数:6
相关论文
共 27 条
  • [21] SCIMITAR: Stochastic Computing In-Memory In-Situ Tracking ARchitecture for Event-Based Cameras
    Romaszkan, Wojciech
    Yang, Jiyue
    Graening, Alexander
    Jacob, Vinod K.
    Sen, Jishnu
    Pamarti, Sudhakar
    Gupta, Puneet
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43 (11) : 4214 - 4225
  • [22] Efficient Parallel Stochastic Computing Multiply-Accumulate (MAC) Technique Using Pseudo-Sobol Bit-Streams
    Hu, Aokun
    Li, Wenjie
    Lyu, Dongxu
    He, Guanghui
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23 : 170 - 179
  • [23] Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines
    Kumar, P.
    Nair, A. R.
    Chatterjee, O.
    Paul, T.
    Ghosh, A.
    Chakrabartty, S.
    Thakur, C. S.
    2019 IEEE 62ND INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2019, : 311 - 314
  • [24] Comparison of gap-based and flow-based control strategies using a new controlled stochastic cellular automaton model for traffic flow
    Kinjo, Kayo
    Tomoeda, Akiyasu
    Transportation Letters, 2024,
  • [25] Implementation of Artificial Neural Networks Using Magnetoresistive Random-Access Memory-Based Stochastic Computing Units
    Shao, Yixin
    Sinaga, Sisilia Lamsari
    Sunmola, Idris O.
    Borland, Andrew S.
    Carey, Matthew J.
    Katine, Jordan A.
    Lopez-Dominguez, Victor
    Amiri, Pedram Khalili
    IEEE MAGNETICS LETTERS, 2021, 12
  • [26] An Area and Energy Efficient Design of Domain-Wall Memory-Based Deep Convolutional Neural Networks using Stochastic Computing
    Ma, Xiaolong
    Zhang, Yipeng
    Yuan, Geng
    Ren, Ao
    Li, Zhe
    Han, Jie
    Hui, Jingtong
    Wang, Yanzhi
    2018 19TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2018, : 314 - 321
  • [27] A Comparison Study of Spin-Transfer Torque- and Spin-Orbit Torque-Based Stochastic Computing Using Computational Random Access Memory (SC-CRAM)
    Zink, Brandon R.
    Riedel, Marc D.
    Karpuzcu, Ulya R.
    Wang, Jian-Ping
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (05) : 1 - 15