SOME COMMUTATIVITY THEOREMS CONCERNING ADDITIVE MAPPINGS AND DERIVATIONS ON SEMIPRIME RINGS

被引:0
|
作者
Ali, Shakir [2 ]
Dhara, Basudeb [3 ]
Fosner, Ajda [1 ]
机构
[1] Univ Primorska, Fac Management, Cankarjeva 5, SI-6104 Koper, Slovenia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[3] Belda Coll, Dept Math, Paschim Medimpur 721424, India
关键词
Prime ring; semiprime ring; ideal; derivation; generalized derivation; GENERALIZED DERIVATIONS; CENTRALIZING MAPPINGS; PRIME-RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with its center Z(R) and I a nonzero ideal of R. The purpose of this paper is to investigate identities satisfied by additive mappings on prime and semiprime rings. More precisely, we prove the following result. Let R be a semiprime ring, and let F, d : R -> R be two additive mappings such that F(xy) = F(x)y + xd(y) for all x, y is an element of R. If F(xy) +/- xy is an element of Z(R) for all x, y is an element of I, then [d(x), x] = 0 for all x is an element of I. Further, if d is a derivation such that d(I) not equal (0), then R contains a nonzero central ideal. Moreover, if R is prime and d is a derivation such that d(I) not equal (0), then R is commutative.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [31] On Automorphisms and Commutativity in Semiprime Rings
    Liau, Pao-Kuei
    Liu, Cheng-Kai
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03): : 584 - 592
  • [32] A COMMUTATIVITY THEOREM FOR SEMIPRIME RINGS
    ABUKHUZAM, H
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (02) : 221 - 224
  • [33] A THEOREM ON COMMUTATIVITY OF SEMIPRIME RINGS
    QUADRI, MA
    ASHRAF, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (03) : 411 - 413
  • [34] Commutativity theorems for prime rings with generalized derivations on Jordan ideals
    Oukhtite, L.
    Mamouni, A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2015, 9 (03): : 314 - 319
  • [35] DERIVATIONS AND COMMUTATIVITY OF RINGS
    CHUNG, LO
    LUH, J
    RICHOUX, AN
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 80 (01) : 77 - 89
  • [36] Commutativity of rings with derivations
    S. Andima
    H. Pajoohesh
    Acta Mathematica Hungarica, 2010, 128 : 1 - 14
  • [37] Commutativity of rings with derivations
    Andima, S.
    Pajoohesh, H.
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 1 - 14
  • [38] On Commutativity of Rings With Derivations
    Ashraf M.
    Rehman N.-U.
    Results in Mathematics, 2002, 42 (1-2) : 3 - 8
  • [39] ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS
    Park, Kyoo-Hong
    Jung, Yong-Soo
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (01): : 41 - 51
  • [40] Coininutativity theorems on prhne and semiprime rings with generalized (sigma, tau)-derivations
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 109 - 122