Numerical analysis of singularly perturbed nonlinear reaction-diffusion problems with multiple solutions

被引:12
|
作者
Stynes, M. [1 ]
Kopteva, N.
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Math, Cork, Ireland
[2] Univ Limerick, Dept Math & Stat, Limerick, Ireland
关键词
nonlinear; reaction-diffusion; boundary layer; interior transition layer; layer-adapted mesh;
D O I
10.1016/j.camwa.2006.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semi linear reaction-diffusion two-point boundary value problems with multiple solutions are considered. Here the second-order derivative is multiplied by a small positive parameter and consequently these solutions can have boundary or interior layers. A survey is given of the results obtained in our recent investigations into the numerical solution of these problems on layer-adapted meshes. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:857 / 864
页数:8
相关论文
共 50 条
  • [1] Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions
    Kopteva, N
    Stynes, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 273 - 288
  • [2] Numerical Solutions of a System of Singularly Perturbed Reaction-Diffusion Problems
    Barati, Ali
    Atabaigi, Ali
    [J]. FILOMAT, 2019, 33 (15) : 4889 - 4905
  • [3] A New Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems
    Temel, Zelal
    Cakir, Musa
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 792 - 805
  • [4] A Numerical Scheme For Semilinear Singularly Perturbed Reaction-Diffusion Problems
    Yamac, Kerem
    Erdogan, Fevzi
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 405 - 412
  • [5] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Munyakazi, Justin B.
    Patidar, Kailash C.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (03): : 509 - 519
  • [6] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Justin B. Munyakazi
    Kailash C. Patidar
    [J]. Computational and Applied Mathematics, 2013, 32 : 509 - 519
  • [7] Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem
    Argun, R. L.
    Volkov, V. T.
    Lukyanenko, D., V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [8] Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems
    Mei, Yanjie
    Wang, Sulei
    Xu, Zhijie
    Song, Chuanjing
    Cheng, Yao
    [J]. SYMMETRY-BASEL, 2021, 13 (12):
  • [9] Numerical solutions of nonlinear functional reaction-diffusion problems
    Ma, Zhongtai
    Xu, Guangshan
    [J]. Journal of Information and Computational Science, 2010, 7 (09): : 1838 - 1845
  • [10] A numerical study on the finite element solution of singularly perturbed systems of reaction-diffusion problems
    Xenophontos, C.
    Oberbroeckling, L.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1351 - 1367