A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems

被引:20
|
作者
Munyakazi, Justin B. [1 ]
Patidar, Kailash C. [1 ]
机构
[1] Univ Western Cape, Dept Math & Appl Math, ZA-7535 Bellville, South Africa
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 03期
基金
新加坡国家研究基金会;
关键词
Parabolic reaction-diffusion problems; Singular perturbations; Fitted operator finite difference methods; Error bounds; Uniform convergence; FINITE-DIFFERENCE METHODS; NONUNIFORM MESH; SCHEME; PARAMETER;
D O I
10.1007/s40314-013-0033-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper treats a time-dependent singularly perturbed reaction-diffusion problem. We semidiscretize the problem in time by means of the classical backward Euler method. We develop a fitted operator finite difference method (FOFDM) to solve the resulting set of linear problems (one at each time level). We prove that the underlying fitted operator satisfies the maximum principle. This result is then used in the error analysis of the FOFDM. The method is shown to be first order convergent in time and second order convergent in space, uniformly with respect to the perturbation parameter. We test the method on several numerical examples to confirm our theoretical findings.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 50 条