Impact of water on CO2 capture by amino acid ionic liquids

被引:83
|
作者
McDonald, Jonathan L. [1 ]
Sykora, Richard E. [1 ]
Hixon, Paul [1 ]
Mirjafari, Arsalan [2 ]
Davis, James H., Jr. [1 ]
机构
[1] Univ S Alabama, Dept Chem, Mobile, AL 36688 USA
[2] Florida Gulf Coast Univ, Dept Chem & Math, Ft Myers, FL 33965 USA
基金
美国国家科学基金会;
关键词
Amino acid ionic liquid; CO2; capture; NMR; Single-crystal X-ray diffraction; TEMPERATURE; ABSORPTION; SYSTEMS; SALTS; MODEL;
D O I
10.1007/s10311-013-0435-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reversible capture of CO2 from fossil-fueled industries and the absorption of CO2 for natural-gas-sweetening purposes are industrial issues closely related to very important environmental, economical, and technological concerns. Biological amino acids can be used for task-specific ionic liquids for reversible CO2 capture. Several groups have reported efficient and reversible CO2 capture by such ionic liquids under rigorously dry conditions. However, we have observed that CO2 capture by amino acid ionic liquids is hugely impacted by the presence of water. In addition, the amino acid anions appear to play only a transitory role in the CO2 capture in the first minutes of exposure to a wet CO2 stream. Here, we studied the interaction of two ionic liquids-tetramethylammonium glycinate ([N-1111][Gly]) and tetraethylammonium prolinate ([N-2222][Pro])-with CO2 under wet conditions, by C-13-NMR. Results show that CO2 is initially captured in a carbamate form by the amine-functionalized anions of these salts. This capture mode is unambiguously confirmed by a single-crystal X-ray study of the CO2-ionic liquid complex. However, in solution, as additional CO2 is added, the carbamate releases the covalently bound CO2, and the CO2 remaining in solution shifts in form to an equilibrium mixture of carbonate and bicarbonate. Indeed, when the amount of CO2 present in the system exceeds about one-half mole per mole of ionic liquid present, the ionic liquid-carbamate complex is detected in only trace amounts, and the neutralized amino acids are readily identifiable by NMR.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [31] Using Ionic Liquids to Improve CO2 Capture
    Alguacil, Francisco Jose
    Robla, Jose Ignacio
    MOLECULES, 2024, 29 (22):
  • [32] Diamino protic ionic liquids for CO2 capture
    Vijayraghavan, R.
    Pas, Steven J.
    Izgorodina, Ekaterina I.
    MacFarlane, Douglas R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (46) : 19994 - 19999
  • [33] Ionic Liquids for CO2 Capture and Emission Reduction
    Brennecke, Joan E.
    Gurkan, Burcu E.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24): : 3459 - 3464
  • [34] Computational design of ionic liquids for CO2 capture
    Lee, TaeBum
    Schneider, William F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [35] A review of encapsulated ionic liquids for CO2 capture
    Solangi, Nadeem Hussain
    Hussin, Farihahusnah
    Anjum, Amna
    Sabzoi, Nizamuddin
    Mazari, Shaukat Ali
    Mubarak, Nabisab Mujawar
    Aroua, Mohamed Kheireddine
    Siddiqui, M. T. H.
    Qureshi, Sundus Saeed
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 374
  • [36] Designer reversible ionic liquids for CO2 capture
    Jha, Rani
    Fadhel, Ali
    Blasucci, Vittoria
    Hart, Ryan
    Pollet, Pamela
    Liotta, Charles L.
    Eckert, Charles A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [37] Chemistry of CO2 capture with AHA ionic liquids
    Seo, Samuel
    Chung, Cheng
    Quiroz-Guzman, Mauricio
    Goodrich, Brett F.
    Verploegh, Ross
    Brennecke, Joan F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [38] CO2 Capture by Ionic Liquids - An Answer to Anthropogenic CO2 Emissions?
    Sanglard, Pauline
    Vorlet, Olivier
    Marti, Roger
    Naef, Olivier
    Vanoli, Ennio
    CHIMIA, 2013, 67 (10) : 711 - 718
  • [39] Absorption of CO2 with Amino Acid-Based Ionic Liquids and Corresponding Amino Acid Precursors
    Guzman, Javier
    Ortega-Guevara, Christian
    Garcia de Leon, Roberto
    Martinez-Palou, Rafael
    CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (12) : 2339 - 2345
  • [40] Ditetraalkylammonium Amino Acid Ionic Liquids as CO2 Absorbents of High Capacity
    Ma, Jing-wen
    Zhou, Zheng
    Zhang, Feng
    Fang, Cheng-gang
    Wu, You-ting
    Zhang, Zhi-bing
    Li, Ai-min
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (24) : 10627 - 10633