Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3

被引:42
|
作者
Zou, Guishan [1 ]
Yang, Xiukang [1 ]
Wang, Xianyou [1 ]
Ge, Long [1 ]
Shu, Hongbo [1 ]
Bai, Yansong [1 ]
Wu, Chun [1 ]
Guo, Haipeng [1 ]
Hu, Liang [1 ]
Yi, Xin [1 ]
Ju, Bowei [1 ]
Hu, Hai [1 ]
Wang, Di [1 ]
Yu, Ruizhi [1 ]
机构
[1] Xiangtan Univ, Sch Chem, Minist Educ, Key Lab Environmentally Friendly Chem & Applicat, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Cathode material; Li-rich layered oxides; Aluminum oxide coating; Improved electrochemical performance; ENHANCED CYCLING STABILITY; SURFACE MODIFICATION; CATHODE MATERIAL; HIGH-CAPACITY; ION; LIMN2O4; LI(LI0.17NI0.25MN0.58)O-2; NANOCRYSTALLINE; ELECTRODES; BATTERIES;
D O I
10.1007/s10008-014-2411-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Li-rich Li-1.3[Ni0.35Mn0.65]O2+x microspheres are firstly prepared and subsequently transferred into the Al2O3-coated Li-rich Li-1.3[Ni0.35Mn0.65]O2+x microspheres by a simple deposition method. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results reveal that the Al2O3-coated Li-rich Li-1.3[Ni0.35Mn0.65]O2+x sample has a typical alpha-NaFeO2 layered structure with the existence of Li2MnO3-type integrated component, and the Al2O3 layer is uniformly coated on the surface of the spherical Li-rich Li-1.3[Ni0.35Mn0.65]O2+x particles with a thickness of about 4 nm. Importantly, the Al2O3-coated Li-rich sample exhibits obviously improved electrochemical performance compared with the pristine one, especially the 2 wt.% Al2O3-coated sample shows the best electrochemical properties, which delivers an initial discharge capacity of 228 mAh g(-1) at a rate of 0.1 C in the voltage of 2.0-4.6 V, and the first coulombic efficiency is up to 90 %. Furthermore, the 2 wt.% Al2O3-coated sample represents excellent cycling stability with capacity retention of 90.9 % at 0.33 C after 100 cycles, much higher than that of the pristine one (62.2 %). Particularly, herein, the typical inferior rate capability of Li-rich layered cathode is apparently improved, and the 2 wt.% Al2O3-coated sample also shows a high rate capability, which can deliver a capacity of 101 mAh g(-1) even at 10 C. Besides, the thin Al2O3 layer can reduce the charge transfer resistance and stabilize the surface structure of active material during cycling, which is responsible for the improvement of electrochemical performance of the Li-rich Li-1.3[Ni0.35Mn0.65]O2+x .
引用
收藏
页码:1789 / 1797
页数:9
相关论文
共 50 条
  • [11] Effects of Al doping for Li[Li0.09Mn0.65*0.91Ni0.35*0.91]O2 cathode material
    Zhaohui Tang
    Xinhai Li
    Zhixing Wang
    Ionics, 2013, 19 : 1495 - 1501
  • [12] Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode
    Song, Bohang
    Zhou, Cuifeng
    Chen, Yu
    Liu, Zongwen
    Lai, Man On
    Xue, Junmin
    Lu, Li
    RSC ADVANCES, 2014, 4 (83): : 44244 - 44252
  • [13] Impact of Al Doping and Surface Coating on the Electrochemical Performances of Li-Rich Mn-Rich Li1.11Ni0.33Mn0.56O2Positive Electrode Material
    Phattharasupakun, Nutthaphon
    Geng, Chenxi
    Johnson, Michel B.
    Vali, Ronald
    Liu, Aaron
    Liu, Yulong
    Sawangphruk, Montree
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)
  • [14] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Zhuolin Du
    Wenjie Peng
    Zhixing Wang
    Huajun Guo
    Qiyang Hu
    Xinhai Li
    Ionics, 2018, 24 : 3717 - 3724
  • [15] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Du, Zhuolin
    Peng, Wenjie
    Wang, Zhixing
    Guo, Huajun
    Hu, Qiyang
    Li, Xinhai
    IONICS, 2018, 24 (12) : 3717 - 3724
  • [16] Enhancing the electrochemical performance of germanium-modified Li-rich Li1.2Ni0.2Mn0.6O2 through simultaneous surface and bulk phase modifications
    Wu, Chen
    Liu, Shibo
    Song, Kejing
    Cao, Yongda
    Wang, Wenhan
    Lai, Xingyu
    Wang, Yuan
    MATERIALS RESEARCH BULLETIN, 2025, 188
  • [17] Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2
    Jeffin James Abraham
    Umair Nisar
    Haya Monawwar
    Aisha Abdul Quddus
    R. A. Shakoor
    Mohamed I. Saleh
    Ramazan Kahraman
    Siham Al-Qaradawi
    Amina S. Aljaber
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 19475 - 19486
  • [18] Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2
    James Abraham, Jeffin
    Nisar, Umair
    Monawwar, Haya
    Abdul Quddus, Aisha
    Shakoor, R. A.
    Saleh, Mohamed I.
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Aljaber, Amina S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (21) : 19475 - 19486
  • [19] Effect of Al and Fe Doping on the Electrochemical Behavior of Li1.2Ni0.133Mn0.534Co0.133O2 Li-Rich Cathode Material
    Medvedeva, Anna
    Makhonina, Elena
    Pechen, Lidia
    Politov, Yury
    Rumyantsev, Aleksander
    Koshtyal, Yury
    Goloveshkin, Alexander
    Maslakov, Konstantin
    Eremenko, Igor
    MATERIALS, 2022, 15 (22)
  • [20] Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries
    Feng Wu
    Huaquan Lu
    Yuefeng Su
    Ning Li
    Liying Bao
    Shi Chen
    Journal of Applied Electrochemistry, 2010, 40 : 783 - 789