Benzo[a]pyrene toxicokinetics in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities

被引:12
|
作者
Seubert, JM
Kennedy, CJ [1 ]
机构
[1] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Western Ontario, Dept Pharmacol & Toxicol, London, ON N6A 5C1, Canada
关键词
D O I
10.1007/s002449910045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of environmental salinity on the distribution, metabolism, and elimination of benzo[a]pyrene (B[a]P) were examined in mature rainbow trout. Trout acclimated to either fresh water (0 ppt, FW) or sea water (20 ppt, SW) for 3 weeks received a single 10 mg/kg intra-arterial injection of [H-3]-benzo[a]pyrene (B[a]P) at their acclimation salinity or when subjected to an acute salinity change. Statistically significant differences in the percent body burden of B[a]P-derived radioactivity in various tissues were seen between fish in FW versus SW. Significant differences in the distribution of B[a]P and its metabolites were also noted when fish were subjected to an acute salinity change after chemical injection. Modulation of B[a]P metabolism by environmental salinity included: (1) significant differences in the proportions of Phase I metabolites in the bile of FW- (2.3%) versus SW-acclimated (14.1%) fish, and (2) alterations in the accumulations of specific metabolites (predominantly t-9, 10-dihydrodiol-B[a]P in FW fish, and 3-hydroxy-B[a]P in SW fish). The percentages of the [H-3]- B[a]P dose eliminated by 48 h was similar in FW and SW fish, but decreased in fish subjected to an acute salinity change (FW 98.8% eliminated, FW:SW 90.4%, SW 98.1%, and SW:FW 93.1%). Pharmacokinetic modeling confirmed that acute salinity changes can result in longer terminal half-lives and slower total body clearances of B[a]P.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 50 条
  • [41] Cryopreservation of rainbow trout (Oncorhynchus mykiss) semen
    Tekin, N
    Secer, S
    Akcay, E
    Bozkurt, Y
    ISRAELI JOURNAL OF AQUACULTURE-BAMIDGEH, 2003, 55 (03): : 208 - 212
  • [42] Abamectin effects on rainbow trout (Oncorhynchus mykiss)
    Vlasta Jenčič
    Manica Černe
    Nevenka Kožuh Eržen
    Silvestra Kobal
    Vesna Cerkvenik-Flajs
    Ecotoxicology, 2006, 15 : 249 - 257
  • [43] Ubiquitin genes in rainbow trout (Oncorhynchus mykiss)
    Okubo, K
    Yamano, K
    Qin, QW
    Aoyagi, K
    Ototake, M
    Nakanishi, T
    Fukuda, H
    Dijkstra, JM
    FISH & SHELLFISH IMMUNOLOGY, 2002, 12 (04) : 335 - 351
  • [44] Antibacterial proteins in rainbow trout, Oncorhynchus mykiss
    Smith, VJ
    Fernandes, JMO
    Jones, SJ
    Kemp, GD
    Tatner, MF
    FISH & SHELLFISH IMMUNOLOGY, 2000, 10 (03) : 243 - 260
  • [45] Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres
    Nilsson, Eric
    Cloud, Joseph G.
    AQUATIC LIVING RESOURCES, 1993, 6 (01) : 77 - 80
  • [46] Testicular transplantation in rainbow trout (Oncorhynchus mykiss).
    Cloud, JG
    Nagler, JJ
    Wheeler, PA
    Thorgaard, GH
    BIOLOGY OF REPRODUCTION, 2000, 62 : 139 - 139
  • [47] Cardiac remodeling in rainbow trout (Oncorhynchus mykiss)
    Simonot, D.
    Farrell, A. P.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2005, 141 (03): : S199 - S199
  • [48] Effects of metribuzin on rainbow trout (Oncorhynchus mykiss)
    Velisek, J.
    Svobodova, Z.
    Piackova, V.
    Novotny, L.
    Blahova, J.
    Sudova, E.
    Maly, V.
    VETERINARNI MEDICINA, 2008, 53 (06) : 324 - 332
  • [49] Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss)
    Velisek, J.
    Wlasow, T.
    Gomulka, P.
    Svobodova, Z.
    Dobsikova, R.
    Novotny, L.
    Dudzik, M.
    VETERINARNI MEDICINA, 2006, 51 (10) : 469 - 476
  • [50] GENETICS OF THERMOTOLERANCE IN RAINBOW TROUT, Oncorhynchus mykiss
    Dupont-Nivet, M.
    Crusot, M.
    Rigaudeau, D.
    Labbe, L.
    Quillet, E.
    AQUACULTURE, 2017, 472 : 90 - 90