Multidimensional multichannel FIR deconvolution using Grobner bases

被引:14
|
作者
Zhou, Jianping
Do, Minh N.
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
algebraic geometry; deconvolution; exact deconvolution; finite impulse response (FIR); Grobner bases; multichannel; multidimensional; multivariate; Nullstellensatz;
D O I
10.1109/TIP.2006.877487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Grobner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Grobner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Grobner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings.
引用
收藏
页码:2998 / 3007
页数:10
相关论文
共 50 条
  • [11] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [12] Grobner bases and applications in the design of multidimensional IIR filter banks
    Lin, ZP
    Xu, L
    Wu, QH
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1903 - 1907
  • [13] Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2005, 13 (01): : 92 - 104
  • [14] Natural gradient multichannel blind deconvolution and source separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 477 - 480
  • [15] ON THE CONSTRUCTION OF GROBNER BASES USING SYZYGIES
    MOLLER, HM
    JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) : 345 - 359
  • [16] Equivalence Checking using Grobner Bases
    Sayed-Ahmed, Amr
    Grosse, Daniel
    Soeken, Mathias
    Drechsler, Rolf
    PROCEEDINGS OF THE 2016 16TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD 2016), 2016, : 169 - 176
  • [17] Rationalizing Denominators Using Grobner Bases
    Li, Dongmei
    Wu, Man
    Liu, Jinwang
    Gao, Yiman
    COMPLEXITY, 2022, 2022
  • [18] Understanding aliasing using Grobner bases
    Pistone, G
    Riccomagno, E
    Wynn, HP
    MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, : 211 - 216
  • [19] Linear Algebra for Computing Grobner Bases of Linear Recursive Multidimensional Sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 61 - 68
  • [20] Special issue on applications of Grobner bases to multidimensional systems and signal processing
    Bose, NK
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (3-4) : 215 - 216