Multidimensional multichannel FIR deconvolution using Grobner bases

被引:14
|
作者
Zhou, Jianping
Do, Minh N.
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
algebraic geometry; deconvolution; exact deconvolution; finite impulse response (FIR); Grobner bases; multichannel; multidimensional; multivariate; Nullstellensatz;
D O I
10.1109/TIP.2006.877487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Grobner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Grobner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Grobner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings.
引用
收藏
页码:2998 / 3007
页数:10
相关论文
共 50 条
  • [1] Multidimensional FIR filter bank design using Grobner bases
    Charoenlarpnopparut, C
    Bose, NK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, 46 (12): : 1475 - 1486
  • [2] Grobner bases and multidimensional FIR multirate systems
    Oakland Univ, Rochester, United States
    Multidimens Syst Signal Proc, 1-2 (11-30):
  • [3] Grobner bases and multidimensional FIR multirate systems
    Park, H
    Kalker, T
    Vetterli, M
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1997, 8 (1-2) : 11 - 30
  • [4] Optimal design of synthesis filters in multidimensional perfect reconstruction FIR filter banks using Grobner bases
    Park, H
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (06): : 843 - 851
  • [5] Design of multidimensional filter banks using Grobner bases: A survey
    Lin, ZP
    Xu, L
    Wu, QH
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 277 - 280
  • [6] Grobner bases for problem solving in multidimensional systems
    Charoenlarpnopparut, C
    Bose, NK
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (3-4) : 365 - 376
  • [7] Multichannel FIR exact deconvolution in multiple variables
    Zhou, JP
    Do, MN
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 1001 - 1004
  • [8] Some applications of Grobner bases in multidimensional systems theory
    Zerz, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S635 - S636
  • [9] Geometrical structures of FIR manifold and multichannel blind deconvolution
    Zhang, LQ
    Cichocki, A
    Amari, S
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 31 (01): : 31 - 44
  • [10] Geometrical Structures of FIR Manifold and Multichannel Blind Deconvolution
    L.-Q. Zhang
    A. Cichocki
    S. Amari
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 31 : 31 - 44