A time-dependent busy period queue length formula for the M/Ek/1 queue

被引:6
|
作者
Baek, Jung Woo [1 ]
Moon, Seung Ki [1 ]
Lee, Ho Woo [2 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Sungkyunkwan Univ, Dept Syst Management Engn, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Transient analysis; Markovian queue; Erlang distribution;
D O I
10.1016/j.spl.2014.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a closed-form time-dependent busy period queue length probability is obtained for the M/E-k/1 queue. This probability is frequently needed when we compare the length of the busy period and the maximum amount of service that can be rendered to the existing customers. The transient probability is given in terms of the generalized modified Bessel function of the second type of Griffiths et al. (2006a). The queue length probability for the M/M/1 queue is also presented as a special case. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 104
页数:7
相关论文
共 50 条