Ni catalyst for hydrogen conversion in gadolinia-doped ceria anodes for solid oxide fuel cells

被引:40
|
作者
Primdahl, S [1 ]
Liu, YL [1 ]
机构
[1] Riso Natl Lab, Mat Res Dept, DK-4000 Roskilde, Denmark
关键词
D O I
10.1149/1.1514234
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A gadolinia-doped ceria Ce0.6Gd0.4O1.8 (CG4) is considered as anode material for solid oxide fuel cells with an yttria-stabilized zirconia electrolyte. Symmetrical cells are mounted in a novel setup geometry with auxiliary electrodes to avoid concentration polarization outside the electrode structure. The polarization resistance in H-2/H2O mixtures is measured by impedance spectroscopy. Two rate-limiting processes are observed. The low frequency process is related to adsorption of hydrogen on the CG4 surface. This limiting process is effectively circumvented by the addition of small amounts of Ni. The high frequency process is related to oxygen ion transport in the CG4 electrode material, either in the bulk or in segregated surface layers. The pO(2) dependence of the electronic conductivity in CG4 is reflected in the series resistance. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A1466 / A1472
页数:7
相关论文
共 50 条
  • [41] Effect of addition method of gadolinia-doped ceria-added FeCr gas diffusion layer on performance of direct-methane solid oxide fuel cells
    Huang, Meng-Chin
    Huang, Ta-Jen
    [J]. JOURNAL OF POWER SOURCES, 2009, 191 (02) : 555 - 559
  • [42] Enhancing thermal-stability of metal electrodes with a sputtered gadolinia-doped ceria over-layer for low-temperature solid oxide fuel cells
    Oh, Seongkook
    Hong, Soonwook
    Kim, Hyong June
    Kim, Young-Beom
    An, Jihwan
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (07) : 5781 - 5788
  • [43] Structure-designed gadolinia doped ceria interlayer for solid oxide fuel cell
    Wu, Weiming
    Zhao, Zhe
    Zhang, Xiaomin
    Liu, Zhongbo
    Cui, Daan
    Tu, Baofeng
    Ou, Dingrong
    Cheng, Mojie
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2016, 71 : 43 - 47
  • [44] Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders
    Gil, V.
    Gurauskis, J.
    Campana, R.
    Merino, R. I.
    Larrea, A.
    Orera, V. M.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1184 - 1190
  • [45] Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells
    Kurokawa, Hideto
    Sholklapper, Tal Z.
    Jacobson, Craig P.
    De Jonghe, Lutgard C.
    Visco, Steven J.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (09) : B135 - B138
  • [46] Anisotropic mechanical behavior of gadolinia-doped ceria solid electrolytes under tensile loading
    Guan, Tianyu
    Yang, Zhiqiang
    Sun, Yi
    Guo, Wenfeng
    [J]. CERAMICS INTERNATIONAL, 2019, 45 (01) : 1293 - 1301
  • [47] Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells
    Kim, Jun Woo
    Jang, Dong Young
    Kim, Manjin
    Choi, Hyung Jong
    Shim, Joon Hyung
    [J]. JOURNAL OF POWER SOURCES, 2016, 301 : 72 - 77
  • [48] Comparison between Ni-Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells
    Boaro, M.
    Modafferi, V.
    Pappacena, A.
    Llorca, J.
    Baglio, V.
    Frusteri, F.
    Frontera, P.
    Trovarelli, A.
    Antonucci, P. L.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (02) : 649 - 661
  • [49] Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h
    Morales, M.
    Miguel-Perez, V.
    Tarancon, A.
    Slodczyk, A.
    Torrell, M.
    Ballesteros, B.
    Ouweltjes, J. P.
    Bassat, J. M.
    Montinaro, D.
    Morata, A.
    [J]. JOURNAL OF POWER SOURCES, 2017, 344 : 141 - 151
  • [50] Development of co-sintering process for anode-supported solid oxide fuel cells with gadolinia-doped ceria/lanthanum silicate bi-layer electrolyte
    Takahashi, Susumu
    Sumi, Hirofumi
    Fujishiro, Yoshinobu
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (41) : 23377 - 23383