Backward shift invariant subspaces in the bidisc. II

被引:0
|
作者
Izuchi, K [1 ]
Nakazi, T
Seto, M
机构
[1] Niigata Univ, Dept Math, Niigata 9502181, Japan
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[3] Tohoku Univ, Dept Math, Sendai, Miyagi 980, Japan
关键词
backward shift invariant subspaces; Hardy space in the bidisc;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every invariant subspace M in the Hardy spaces H-2(Gamma(2)), let V-z and V-w be multiplication operators on M. Then it is known that the condition VzVw* = V-w*V-z on M holds if and only if M is a Beurling type invariant subspace. For a backward shift invariant subspace N in H-2(Gamma(2)), two operators S-z and S-w on N are defined by S-z = PNLzPN and S-w = PNLwPN, where P-N is the orthogonal projection from L-2(Gamma(2)) onto N. It is given a characterization of N satisfying SzSw* = S-w*S-z on N.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条