Minimal constraints for maximum caliber analysis of dissipative steady-state systems

被引:5
|
作者
Agozzino, Luca [1 ,2 ]
Dill, Ken [1 ,2 ,3 ]
机构
[1] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
ENTROPY PRODUCTION;
D O I
10.1103/PhysRevE.100.010105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Maximum caliber (Max Cal) is purported to be a general variational principle for nonequilibrium statistical physics. But recently, Jack and Evans [J. Stat. Mech.: Theory Exp. (2016) 093305] and Maes [Non-Dissipative Effects in Nonequilibrium Systems (Springer, New York, 2018)] have raised concerns about how Max Cal handles dissipative processes. Here, we show that the problem does not lie in Max Cal; the problem is in the use of insufficient constraints. We also present an exactly solvable single-particle model of dissipation, valid far from equilibrium, and its solution by maximum caliber. The model illustrates how the influx and efflux of work and heat into a flowing system alters the distribution of trajectories. Maximum caliber is a viable principle for dissipative systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Steady-state charging of quantum batteries via dissipative ancillas
    Kamin, F. H.
    Salimi, S.
    Arjmandi, M. B.
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [32] Steady-state teleportation fidelity and Bell nonlocality in dissipative environments
    Xie, Yu-Xia
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (07)
  • [33] Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems
    Jin, Jiasen
    Biella, Alberto
    Viyuela, Oscar
    Mazza, Leonardo
    Keeling, Jonathan
    Fazio, Rosario
    Rossini, Davide
    PHYSICAL REVIEW X, 2016, 6 (03):
  • [34] STEADY-STATE RESPONSE OF CONTINUOUS DISSIPATIVE SYSTEMS WITH SMALL NON-LINEARITY .2.
    MILNE, RD
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1961, 14 (02): : 243 - &
  • [35] Steady-State and Transient Analysis of Maximum Torque per Ampere Control for IPMSMs
    Consoli, A.
    Scarcella, G.
    Scelba, G.
    Sindoni, S.
    Testa, A.
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1761 - +
  • [36] Analysis of maximum steady-state throughput for temperature-constrained multicore processors
    Zhang, Biying
    Chen, Hongsong
    Cui, Gang
    Fu, Zhongchuan
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (09): : 2083 - 2093
  • [37] Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders
    Hoke, Anderson
    Butler, Rebecca
    Hambrick, Joshua
    Kroposki, Benjamin
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (02) : 350 - 357
  • [38] INDIVIDUAL ANAEROBIC THRESHOLD AND MAXIMUM LACTATE STEADY-STATE
    URHAUSEN, A
    COEN, B
    WEILER, B
    KINDERMANN, W
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1993, 14 (03) : 134 - 139
  • [39] Magnetic field influence analysis on the large-caliber steady-state magnetic field testing system
    Huang, Ya
    Jiang, Li
    Lei, Hong
    Gao, Ge
    Wu, Peng
    Zhang, Jie
    Huang, Zhengyi
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (04):
  • [40] A semidefinite optimization approach to the steady-state analysis of queueing systems
    Bertsimas, Dimitris
    Natarajan, Karthik
    QUEUEING SYSTEMS, 2007, 56 (01) : 27 - 39