Contemporary Quantitative Methods and "Slow'' Causal Inference: Response to Palinkas

被引:2
|
作者
Stone, Susan [1 ]
机构
[1] Univ Calif Berkeley, Sch Social Welf, Berkeley, CA 94720 USA
关键词
causal inference; observational data; social work science; SOCIAL-WORK; PERSPECTIVES; CHALLENGES; SCIENCE;
D O I
10.1177/1049731514541214
中图分类号
C916 [社会工作、社会管理、社会规划];
学科分类号
1204 ;
摘要
This response considers together simultaneously occurring discussions about causal inference in social work and allied health and social science disciplines. It places emphasis on scholarship that integrates the potential outcomes model with directed acyclic graphing techniques to extract core steps in causal inference. Although this scholarship is focused on bolstering causal inference from observational data, it is argued that it also offers processes to facilitate what Marsh terms as slow causal thinking.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [41] Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives
    Palinkas, Lawrence A.
    [J]. RESEARCH ON SOCIAL WORK PRACTICE, 2014, 24 (05) : 540 - 547
  • [42] Modeling networks for prediction and causal inference in quantitative genetics and genomics
    Rosa, G. J. M.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 17 - 17
  • [43] User Response Driven Content Understanding with Causal Inference
    Tan, Fei
    Wei, Zhi
    Pani, Abhishek
    Yan, Zhenyu
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1324 - 1329
  • [44] The estimation of causal effects: an introduction to methods of causal inference based on peer effects in education
    Legewie, Joscha
    [J]. KOLNER ZEITSCHRIFT FUR SOZIOLOGIE UND SOZIALPSYCHOLOGIE, 2012, 64 (01): : 123 - 153
  • [45] Quantitative methods II: Issues of inference in quantitative human geography
    Brunsdon, Christopher
    [J]. PROGRESS IN HUMAN GEOGRAPHY, 2017, 41 (04) : 512 - 523
  • [46] Causal inference methods for vaccine sieve analysis with effect modification
    Yang, Guandong
    Balzer, Laura B.
    Benkeser, David
    [J]. STATISTICS IN MEDICINE, 2022, 41 (08) : 1513 - 1524
  • [47] Causal inference methods to study nonrandomized, preexisting development interventions
    Arnold, Benjamin F.
    Khush, Ranjiv S.
    Ramaswamy, Padmavathi
    London, Alicia G.
    Rajkumar, Paramasivan
    Ramaprabha, Prabhakar
    Durairaj, Natesan
    Hubbard, Alan E.
    Balakrishnan, Kalpana
    Colford, John M., Jr.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (52) : 22605 - 22610
  • [48] Regression and weighting methods for causal inference using instrumental variables
    Tan, Zhiqiang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1607 - 1618
  • [49] Causal inference for time series analysis: problems, methods and evaluation
    Moraffah, Raha
    Sheth, Paras
    Karami, Mansooreh
    Bhattacharya, Anchit
    Wang, Qianru
    Tahir, Anique
    Raglin, Adrienne
    Liu, Huan
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (12) : 3041 - 3085
  • [50] Causal Inference Methods for Intergenerational Research Using Observational Data
    Frach, Leonard
    Jami, Eshim S. S.
    McAdams, Tom A. A.
    Dudbridge, Frank
    Pingault, Jean-Baptiste
    [J]. PSYCHOLOGICAL REVIEW, 2023, 130 (06) : 1688 - 1703