Room temperature 3D printing of super-soft and solvent-free elastomers

被引:84
|
作者
Xie, Renxuan [1 ,2 ]
Mukherjee, Sanjoy [1 ,2 ]
Levi, Adam E. [3 ]
Reynolds, Veronica G. [2 ,4 ]
Wang, Hengbin [2 ]
Chabinyc, Michael L. [2 ,4 ]
Bates, Christopher M. [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
STEADY-SHEAR RHEOLOGY; BLOCK-COPOLYMER MELTS; ORDER-DISORDER TRANSITION; CONCENTRATED-SOLUTIONS; RESPONSIVE HYDROGELS; MICELLE REGIME; STRESS; BENZOPHENONE; POLYMERS;
D O I
10.1126/sciadv.abc6900
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Super-soft elastomers derived from bottlebrush polymers show promise as advanced materials for biomimetic tissue and device applications, but current processing strategies are restricted to simple molding. Here, we introduce a design concept that enables the three-dimensional (3D) printing of super-soft and solvent-free bottlebrush elastomers at room temperature. The key advance is a class of inks comprising statistical bottlebrush polymers that self-assemble into well-ordered body-centered cubic sphere phases. These soft solids undergo sharp and reversible yielding at 20 degrees C in response to shear with a yield stress that can be tuned by manipulating the length scale of microphase separation. The addition of a soluble photocrosslinker allows complete ultraviolet curing after extrusion to form super-soft elastomers with near-perfect recoverable elasticity well beyond the yield strain. These structure-property design rules create exciting opportunities to tailor the performance of 3D-printed elastomers in ways that are not possible with current materials and processes.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Solvent-free blending of CsPbBr3 and commercial polymer: Interface-visualization, bandgap engineering and improved stability in 3D printing
    Liu, Zhen
    Xia, Xinshu
    Xu, Siyu
    Wu, Yanan
    Xiao, Liren
    Cao, Changlin
    Chen, Qinghua
    Zhou, Weiming
    Sun, Xiaoli
    Du, Ke-Zhao
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [42] Free standing 3D printing
    Nickels L.
    2018, Elsevier Ltd (73) : 307 - 309
  • [43] 3D printing of soft robotic systems
    T. J. Wallin
    J. Pikul
    R. F. Shepherd
    Nature Reviews Materials, 2018, 3 : 84 - 100
  • [44] 3D Printing Materials for Soft Robotics
    Sachyani Keneth, Ela
    Kamyshny, Alexander
    Totaro, Massimo
    Beccai, Lucia
    Magdassi, Shlomo
    ADVANCED MATERIALS, 2021, 33 (19)
  • [45] 3D printing soft tissue scaffolds
    Bradley, David
    MATERIALS TODAY, 2018, 21 (04) : 322 - 322
  • [46] 3D Printing Microactuators for Soft Microrobots
    Tyagi, Manav
    Spinks, Geoffrey M.
    Jager, Edwin W. H.
    SOFT ROBOTICS, 2021, 8 (01) : 19 - 27
  • [47] Hybrid 3D Printing of Soft Electronics
    Valentine, Alexander D.
    Busbee, Travis A.
    Boley, John William
    Raney, Jordan R.
    Chortos, Alex
    Kotikian, Arda
    Berrigan, John Daniel
    Durstock, Michael F.
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2017, 29 (40)
  • [48] 3D printing magnetic soft gripper
    Sheng Y.
    Ou X.
    Huang J.
    Huang D.
    Li X.
    Bi R.
    Shi M.
    Guo S.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (05): : 2670 - 2679
  • [49] 3D printing of soft robotic systems
    Wallin, T. J.
    Pikul, J.
    Shepherd, R. F.
    NATURE REVIEWS MATERIALS, 2018, 3 (06): : 84 - 100
  • [50] 3D printing for soft robotics - a review
    Gul, Jahan Zeb
    Sajid, Memoon
    Rehman, Muhammad Muqeet
    Siddiqui, Ghayas Uddin
    Shah, Imran
    Kim, Kyung-Hwan
    Lee, Jae-Wook
    Choi, Kyung Hyun
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) : 243 - 262