Asymptotic gauges: Generalization of Colombeau type algebras

被引:8
|
作者
Giordano, Paolo [1 ]
Luperi Baglini, Lorenzo [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Colombeau-type algebras; asymptotic gauges; embeddings of distributions; linear ODEs with generalized coefficients; set of indices; TOPOLOGY;
D O I
10.1002/mana.201400278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the general notion of set of indices to construct algebras of nonlinear generalized functions of Colombeau type. They are formally defined in the same way as the special Colombeau algebra, but based on more general growth condition formalized by the notion of asymptotic gauge. This generalization includes the special, full and nonstandard analysis based Colombeau type algebras in a unique framework. We compare Colombeau algebras generated by asymptotic gauges with other analogous construction, and we study systematically their properties, with particular attention to the existence and definition of embeddings of distributions. We finally prove that, in our framework, for every linear homogeneous ODE with generalized coefficients there exists a minimal Colombeau algebra generated by asymptotic gauges in which the ODE can be uniquely solved. This marks a main difference with the Colombeau special algebra, where only linear homogeneous ODEs satisfying some restrictions on the coefficients can be solved.
引用
收藏
页码:247 / 274
页数:28
相关论文
共 50 条
  • [1] The category of Colombeau algebras
    Lorenzo Luperi Baglini
    Paolo Giordano
    Monatshefte für Mathematik, 2017, 182 : 649 - 674
  • [2] The category of Colombeau algebras
    Luperi Baglini, Lorenzo
    Giordano, Paolo
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (03): : 649 - 674
  • [3] Imbedding of infinite dimensional distributions into simplified Colombeau type algebras
    Capar, Ulug
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 755 - 770
  • [4] Imbedding of infinite dimensional distributions into simplified Colombeau type algebras
    Uluğ Çapar
    Monatshefte für Mathematik, 2022, 199 : 755 - 770
  • [5] New versions of the Colombeau algebras
    Shelkovich, VM
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (11) : 1318 - 1340
  • [6] FULL AND SPECIAL COLOMBEAU ALGEBRAS
    Grosser, M.
    Nigsch, E. A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (04) : 961 - 994
  • [7] Colombeau algebras without asymptotics
    Nigsch, Eduard A.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (01) : 133 - 154
  • [8] Colombeau algebras without asymptotics
    Eduard A. Nigsch
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 133 - 154
  • [9] NATURAL TOPOLOGIES ON COLOMBEAU ALGEBRAS
    Aragona, Jorge
    Fernandez, Roseli
    Juriaans, Stanley O.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (01) : 161 - 180
  • [10] Sequence spaces with exponent weights. Realizations of Colombeau type algebras
    Delcroix, Antoine
    Hasler, Maximilian F.
    Pilipovic, Stevan
    Valmorin, Vincent
    DISSERTATIONES MATHEMATICAE, 2007, (447) : 3 - +