Upper bounds on the signed edge domination number of a graph

被引:5
|
作者
Dong, Fengming [1 ]
Ge, Jun [2 ]
Yang, Yan [3 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
[3] Tianjin Univ, Sch Math, Tianjin, Peoples R China
关键词
Signed edge domination function; Signed edge domination number; Trail decomposition;
D O I
10.1016/j.disc.2020.112201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A signed edge domination function (or SEDF) of a simple graph G = (V, E) is a function f : E -> {1,-1} such that Sigma(e 'is an element of N[e]) f (e ') >= 1 holds for each edge e is an element of E, where N[e] is the set of edges in G that share at least one endpoint with e. Let gamma '(s)(G) denote the minimum value of f (G) among all SEDFs f, where f (G) = Sigma(e is an element of E)f (e). In 2005, Xu conjectured that gamma '(s)(G) <= n - 1, where n is the order of G. This conjecture has been proved for the two cases v(odd)(G) = 0 and v(even)(G) = 0, where v(odd)(G) (resp. v(even)(G)) is the number of odd (resp. even) vertices in G. This article proves Xu's conjecture for v(even)(G) is an element of{1, 2}. We also show that for any simple graph G of order n, gamma '(s)(G) <= n + v(odd)(G)/2 and gamma '(s)(G) <= n - 2 + v(even)(G) when v(even)(G) > 0, and thus gamma '(s)(G) <= (4n - 2)/3. Our result improves the best current upper bound of gamma '(s)(G) <= [3n/2]. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Upper bounds on the domination number of a graph in terms of order, diameter and minimum degree
    Kuepper, Beate
    Volkmann, Lutz
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 133 - 140
  • [32] Upper signed k-domination in a general graph
    Delic, Dejan
    Wang, Changping
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (16) : 662 - 665
  • [33] On the signed (total) k-domination number of a graph
    Liang, Hongyu
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2014, 89 : 87 - 99
  • [34] THE EDGE STEINER DOMINATION NUMBER OF A GRAPH
    Flower, J. Nesa Golden
    Beula, T. Muthu Nesa
    Chandrakumar, S.
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (05): : 711 - 719
  • [35] LOWER BOUNDS ON SIGNED EDGE TOTAL DOMINATION NUMBERS IN GRAPHS
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 595 - 603
  • [36] Lower bounds on signed edge total domination numbers in graphs
    H. Karami
    S. M. Sheikholeslami
    Abdollah Khodkar
    [J]. Czechoslovak Mathematical Journal, 2008, 58 : 595 - 603
  • [37] Notes on upper bounds for the largest eigenvalue based on edge-decompositions of a signed graph
    Stanic, Zoran
    [J]. KUWAIT JOURNAL OF SCIENCE, 2023, 50 (03) : 200 - 203
  • [38] Bounds on the k-domination number of a graph
    DeLaVina, Ermelinda
    Goddard, Wayne
    Henning, Michael A.
    Pepper, Ryan
    Vaughan, Emil R.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 996 - 998
  • [39] Bounds on the Total Restrained Domination Number of a Graph
    J. H. Hattingh
    E. Jonck
    E. J. Joubert
    [J]. Graphs and Combinatorics, 2010, 26 : 77 - 93
  • [40] Bounds on the Total Restrained Domination Number of a Graph
    Hattingh, J. H.
    Jonck, E.
    Joubert, E. J.
    [J]. GRAPHS AND COMBINATORICS, 2010, 26 (01) : 77 - 93