Superconductivity of lithium-doped hydrogen under high pressure

被引:63
|
作者
Xie, Yu [1 ,2 ,3 ]
Li, Quan [1 ]
Oganov, Artem R. [2 ,3 ,4 ]
Wang, Hui [1 ]
机构
[1] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] SUNY Stony Brook, Dept Geosci, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, New York Ctr Computat Sci, Stony Brook, NY 11794 USA
[4] Moscow MV Lomonosov State Univ, Dept Geol, Moscow 119992, Russia
基金
中国国家自然科学基金;
关键词
computational materials discovery; high-temperature superconductors; lithium hydrides; lithium-doped hydrogen; high-pressure studies; CRYSTAL-STRUCTURE PREDICTION; STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; METALLIC HYDROGEN; SOLID HYDROGEN; PHASES; SILANE; GPA; SPECTROSCOPY; PRINCIPLES;
D O I
10.1107/S2053229613028337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high-pressure lattice dynamics and superconductivity of newly proposed lithium hydrides (LiH2, LiH6 and LiH8) have been extensively studied using density functional theory. The application of the Allen-Dynes modified McMillan equation and electron-phonon coupling calculations show that LiH6 and LiH8 are superconductors with critical temperatures (T-c) of 38 K at 150 GPa for LiH6 and 31 K at 100 GPa for LiH8, while LiH2 is not a superconductor. The T-c of LiH6 increases rapidly with pressure and reaches 82 K at 300 GPa due to enhancement of the electron-phonon coupling and the increased density of states at the Fermi level, while the T-c of LiH8 remains almost constant.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [21] Superconductivity in doped polyethylene at high pressure
    José A. Flores-Livas
    Miglė Graužinytė
    Lilia Boeri
    Gianni Profeta
    Antonio Sanna
    [J]. The European Physical Journal B, 2018, 91
  • [22] Superconductivity under high pressure
    Amaya, K
    Shimizu, K
    Takeda, K
    Tateiwa, N
    Muramatsu, T
    Ishizuka, M
    Kobayashi, TC
    [J]. PHYSICA B-CONDENSED MATTER, 2003, 329 : 1308 - 1311
  • [23] TRANSPORT IN LITHIUM-DOPED AMORPHOUS SILICON
    BEYER, W
    FISCHER, R
    OVERHOF, H
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1979, 39 (03): : 205 - 217
  • [24] SUPPRESSIVE WRITING IN LITHIUM-DOPED NAF
    CASASENT, D
    CAIMI, F
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1976, 34 (02): : 461 - 466
  • [25] RADIATION DEFECTS IN LITHIUM-DOPED SILICON
    SMIRNOVA, IV
    CHAPNIN, VA
    VAVILOV, VS
    [J]. SOVIET PHYSICS-SOLID STATE, 1963, 4 (12): : 2469 - 2474
  • [26] PHONON SPECTROSCOPY OF LITHIUM-DOPED KBR
    ZOLLER, W
    BRIDGES, F
    [J]. PHYSICAL REVIEW B, 1981, 24 (08): : 4796 - 4804
  • [27] Chemical reactivity of lithium-doped fullerenes
    Denis, Pablo A.
    [J]. JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2012, 25 (04) : 322 - 326
  • [28] Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory
    Yao, Yansun
    Tse, J. S.
    Tanaka, K.
    Marsiglio, F.
    Ma, Y.
    [J]. PHYSICAL REVIEW B, 2009, 79 (05)
  • [29] Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials
    Cao, Dapeng
    Lan, Jianhui
    Wang, Wenchuan
    Smit, Berend
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) : 4730 - 4733
  • [30] Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures
    Rao, Dewei
    Lu, Ruifeng
    Xiao, Chuanyun
    Kan, Erjun
    Deng, Kaiming
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (27) : 7698 - 7700