Superconductivity of lithium-doped hydrogen under high pressure

被引:63
|
作者
Xie, Yu [1 ,2 ,3 ]
Li, Quan [1 ]
Oganov, Artem R. [2 ,3 ,4 ]
Wang, Hui [1 ]
机构
[1] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] SUNY Stony Brook, Dept Geosci, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, New York Ctr Computat Sci, Stony Brook, NY 11794 USA
[4] Moscow MV Lomonosov State Univ, Dept Geol, Moscow 119992, Russia
基金
中国国家自然科学基金;
关键词
computational materials discovery; high-temperature superconductors; lithium hydrides; lithium-doped hydrogen; high-pressure studies; CRYSTAL-STRUCTURE PREDICTION; STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; METALLIC HYDROGEN; SOLID HYDROGEN; PHASES; SILANE; GPA; SPECTROSCOPY; PRINCIPLES;
D O I
10.1107/S2053229613028337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high-pressure lattice dynamics and superconductivity of newly proposed lithium hydrides (LiH2, LiH6 and LiH8) have been extensively studied using density functional theory. The application of the Allen-Dynes modified McMillan equation and electron-phonon coupling calculations show that LiH6 and LiH8 are superconductors with critical temperatures (T-c) of 38 K at 150 GPa for LiH6 and 31 K at 100 GPa for LiH8, while LiH2 is not a superconductor. The T-c of LiH6 increases rapidly with pressure and reaches 82 K at 300 GPa due to enhancement of the electron-phonon coupling and the increased density of states at the Fermi level, while the T-c of LiH8 remains almost constant.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [1] Low-pressure superconductivity in lithium-doped methane predicted by first principles
    Lu, Ning
    Hai, Yu-Long
    Lv, Hai-Yan
    Li, Wen-Jie
    Yang, Chun-Lei
    Zhong, Guo-Hua
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (03):
  • [2] First-principles study of lithium-doped carbon clathrates under pressure
    Rey, Nicolas
    Munoz, Alfonso
    Rodriguez-Hernandez, Placida
    San Miguel, Alfonso
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (21)
  • [3] Superconductivity of hydrogen superoxide under high pressure
    Ishikawa, Takahiro
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (11):
  • [4] Atomic hydrogen adsorption on lithium-doped graphite surfaces
    Allouche, A.
    Krstic, P. S.
    [J]. CARBON, 2012, 50 (02) : 510 - 517
  • [5] Superconductivity and Crystal Structure of Lithium under High Pressure
    Matsuoka, Takahiro
    Onoda, Suzue
    Kaneshige, Masahiro
    Nakamoto, Yuki
    Shimizu, Katsuya
    Kagayama, Tomoko
    Ohishi, Yasuo
    [J]. JOINT 21ST AIRAPT AND 45TH EHPRG INTERNATIONAL CONFERENCE ON HIGH PRESSURE SCIENCE AND TECHNOLOGY, 2008, 121
  • [6] Superconductivity in Lithium Under Pressure
    R. A. Jishi
    M. Benkraouda
    J. Bragin
    [J]. Journal of Low Temperature Physics, 2007, 147 : 549 - 557
  • [7] Superconductivity in lithium under pressure
    Jishi, R. A.
    Benkraouda, M.
    Bragin, J.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 147 (5-6) : 549 - 557
  • [8] Modelling the interaction of molecular hydrogen with lithium-doped hydrogen storage materials
    Kolmann, Stephen J.
    Chan, Bun
    Jordan, Meredith J. T.
    [J]. CHEMICAL PHYSICS LETTERS, 2008, 467 (1-3) : 126 - 130
  • [9] Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica
    Masaru Kubo
    Hiroshi Ushiyama
    Atsushi Shimojima
    Tatsuya Okubo
    [J]. Adsorption, 2011, 17 : 211 - 218
  • [10] Hydrogen storage capacity of lithium-doped KOH activated carbons
    Minoda, Ai
    Oshima, Shinji
    Iki, Hideshi
    Akiba, Etsuo
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 606 : 112 - 116