On parabolic subgroups of Artin-Tits groups of spherical type

被引:21
|
作者
Cumplido, Maria [1 ,2 ]
Gebhardt, Volker [3 ]
Gonzalez-Meneses, Juan [2 ]
Wiest, Bert [1 ]
机构
[1] Univ Rennes, CNRS, UMR 6625, IRMAR, F-35000 Rennes, France
[2] Univ Seville, Inst Matemat IMUS, Dept Algebra, Av Reina Mercedes S-N, E-41012 Seville, Spain
[3] Western Sydney Univ, Ctr Res Math, Locked Bag 1797, Penrith, NSW 2751, Australia
关键词
Artin groups; Artin-Tits groups; Parabolic subgroups; Complex of curves; CONJUGACY PROBLEM; GARSIDE GROUPS; ALGORITHMS;
D O I
10.1016/j.aim.2019.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, in an Artin-Tits group of spherical type, the intersection of two parabolic subgroups is a parabolic subgroup. Moreover, we show that the set of parabolic subgroups forms a lattice with respect to inclusion. This extends to all Artin-Tits groups of spherical type a result that was previously known for braid groups. To obtain the above results, we show that every element in an Artin-Tits group of spherical type admits a unique minimal parabolic subgroup containing it, which we call its parabolic closure. We also show that the parabolic closure of an element coincides with the parabolic closure of any of its powers or roots. As a consequence, if an element belongs to a parabolic subgroup, all its roots belong to the same parabolic subgroup. We define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue, in Artin-Tits groups of spherical type, of the celebrated complex of curves which is an important tool in braid groups, and more generally in mapping class groups. We conjecture that the complex of irreducible parabolic subgroups is delta-hyperbolic. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 610
页数:39
相关论文
共 50 条
  • [21] Quasi-projectivity, Artin-Tits Groups, and Pencil Maps
    Artal Bartolo, Enrique
    Ignacio Cogolludo-Agustin, Jose
    Matei, Daniel
    [J]. TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES, 2011, 538 : 113 - +
  • [22] On parabolic subgroups of Artin groups
    Moeller, Philip
    Paris, Luis
    Varghese, Olga
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2024, 261 (02) : 809 - 840
  • [23] Parabolic subgroups of Artin groups
    Paris, L
    [J]. JOURNAL OF ALGEBRA, 1997, 196 (02) : 369 - 399
  • [24] Lower central series of Artin-Tits and surface braid groups
    Bellingeri, Paolo
    Gervais, Sylvain
    Guaschi, John
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (04) : 1409 - 1427
  • [25] PARABOLIC SUBGROUPS INSIDE PARABOLIC SUBGROUPS OF ARTIN GROUPS
    Blufstein, Martin A.
    Paris, Luis
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 151 (04) : 1519 - 1526
  • [26] Parabolic subgroups of large-type Artin groups
    Cumplido, Maria
    Martin, Alexandre
    Vaskou, Nicolas
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 174 (02) : 393 - 414
  • [27] Parabolic subgroups in FC-type Artin groups
    Morris-Wright, Rose
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (01)
  • [28] K(π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups
    Godelle, Eddy
    Paris, Luis
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 1339 - 1364
  • [29] Garside families in Artin-Tits monoids and low elements in Coxeter groups
    Dehornoy, Patrick
    Dyer, Matthew
    Hohlweg, Christophe
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 403 - 408
  • [30] Admissible submonoids of Artin-Tits monoids
    Castella, Anatole
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (07) : 1594 - 1611