Adsorption of O, OH, and H2O on Pt-based bimetallic clusters alloyed with Co, Cr, and Ni

被引:80
|
作者
Balbuena, PB
Altomare, D
Vadlamani, N
Bingi, S
Agapito, LA
Seminario, JM
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2004年 / 108卷 / 30期
关键词
D O I
10.1021/jp0489572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Binding energies and preferred adsorption sites of O, OH, and H2O to bimetallic clusters PtX, Pt2X, and PtX, (X = Pt, Co, Cr, Ni) are determined using density functional theory. The second metal element in the alloy has stronger affinity for OH than the Pt sites, and it is able to adsorb up to two OH radicals per site in oxygenated clusters. The highest binding strength of atomic oxygen is found in the hollow sites of Ni-3 and CO3, followed by adsorption in hollow or bridge sites of Pt2X or PtX2, in all cases significantly stronger than that found in Pt-3. H2O adsorbs on top sites of pure and alloy clusters with much weaker energies compared with those of OH and O; however, the H2O binding strength in the Co, Cr, and Ni atoms is enhanced with respect to that on the Pt site, whereas the binding strength of H2O on the top of Pt sites of the alloy clusters is much reduced with respect to that in the pure cluster.
引用
收藏
页码:6378 / 6384
页数:7
相关论文
共 50 条
  • [31] MECHANISM OF THE FORMATION OF H+(H2O)N.OH CLUSTERS
    ARIFOV, UA
    POZHAROV, SL
    HIGH ENERGY CHEMISTRY, 1978, 12 (05) : 327 - 331
  • [32] Hydrogen bonding in cubic (H2O)8 and OH•(H2O)7 clusters -: art. no. 013204
    Belair, SD
    Francisco, JS
    Singer, SJ
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [33] Interaction Energy and the Shift in OH Stretch Frequency on Hydrogen Bonding for the H2O→H2O, CH3OH→H2O, and H2O→CH3OH dimers
    Campen, Richard Kramer
    Kubicki, James D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (05) : 963 - 972
  • [34] Saturation molalities and standard molar enthalpies of solution of 2′-deoxyadenosine • H2O(cr), 2′-deoxycytidine • H2O(cr), 2′-deoxyguanosine • H2O(cr), 2′-deoxyinosine(cr), and 2′-deoxyuridine(cr) in H2O(1)
    Tewari, YB
    Gery, PD
    Vaudin, MD
    Mighell, AD
    Klein, R
    Goldberg, RN
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2005, 37 (03): : 233 - 241
  • [35] Tracking the energy flow in the hydrogen exchange reaction OH + H2O → H2O + OH
    Zhu, Yongfa
    Ping, Leilei
    Bai, Mengna
    Liu, Yang
    Song, Hongwei
    Li, Jun
    Yang, Minghui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (18) : 12543 - 12556
  • [36] Properties of (H2O)n, (H2O)n, and (H2O)nH+ clusters.
    Jordan, KD
    Vila, F
    Christie, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U387 - U387
  • [37] Competition of CO2/H2O in Adsorption Based CO2 Capture
    Li, Gang
    Xiao, Penny
    Webley, Paul A.
    Zhang, Jun
    Singh, Ranjeet
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1123 - 1130
  • [38] ADSORPTION STUDY OF CO AND H2O ON CARBON MATERIALS, NI AND STAINLESS-STEEL
    KATO, S
    JOSEK, K
    TAGLAUER, E
    VACUUM, 1991, 42 (04) : 253 - 256
  • [39] GITTERKONSTANTEN UND RAUMGRUPPE DER ISOTYPEN VERBINDUNGEN EU(OH)2 H2O SR(OH)2 H2O UND BA(OH)2 H2O
    BARNIGHAUSEN, H
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1966, 342 (5-6): : 233 - +
  • [40] REARRANGEMENTS OF MODEL (H2O)8 AND (H2O)20 CLUSTERS
    WALES, DJ
    OHMINE, I
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (09): : 7257 - 7268