Approximating Minimum Label s-t Cut via Linear Programming

被引:0
|
作者
Tang, Linqing [1 ,2 ]
Zhang, Peng [3 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, POB 8718, Beijing 100190, Peoples R China
[2] Grad Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
来源
基金
中国博士后科学基金;
关键词
TREE PROBLEM; ALGORITHMS; GRAPHS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the Minimum Label s-t Cut problem. Given an undirected graph G = (V, E) with a label set L, in which each edge has a label from L, and a source s is an element of V together with a sink t is an element of V, the goal of the Minimum Label s-t Cut problem is to pick a subset of labels of minimized cardinality, such that the removal of all edges with these labels from G disconnects s and t. We present a min{O((m/OPT)(1/2)), O(n(2/3)/OPT1/3)}-approximation algorithm for the Minimum Label s-t Cut problem using linear programming technique, where n = vertical bar V vertical bar, m = vertical bar E vertical bar, and OPT is the optimal value of the input instance. This result improves the previously best known approximation ratio O(m(1/2)) for this problem (Zhang et al., JOCO 21(2), 192-208 (2011)), and gives the first approximation ratio for this problem in terms of n. Moreover, we show that our linear program relaxation for the Minimum Label s-t Cut problem, even in a stronger form, has integrality gap Omega((m/OPT)(1/2-epsilon)).
引用
收藏
页码:655 / 666
页数:12
相关论文
共 50 条
  • [31] Almost-Linear Time Algorithms for Incremental Graphs: Cycle Detection, SCCs, s-t Shortest Path, and Minimum-Cost Flow
    Chen, Li
    Kyng, Rasmus
    Liu, Yang P.
    Meierhans, Simon
    Gutenberg, Maximilian Probst
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1165 - 1173
  • [32] On directed odd or even minimum (s, t)-cut problem and generalizations
    Fülöp, O
    [J]. ARS COMBINATORIA, 2002, 65 : 145 - 147
  • [33] Medical image segmentation via min s-t cuts with sides constraints
    Chen, Jiun-Hung
    Shapiro, Linda G.
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1530 - 1533
  • [34] Distributed Mixed-Integer Linear Programming via Cut Generation and Constraint Exchange
    Testa, Andrea
    Rucco, Alessandro
    Notarstefano, Giuseppe
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1456 - 1467
  • [35] Most vital vertices for the shortest s-t path problem: complexity and Branch-and-Cut algorithm
    Magnouche, Youcef
    Martin, Sebastien
    [J]. OPTIMIZATION LETTERS, 2020, 14 (08) : 2039 - 2053
  • [36] Optimum neural network construction via linear programming minimum sphere set covering
    School of Engineering, Air Force Engineering University, Xian
    Shaanxi Province
    710038, China
    不详
    100076, China
    [J]. Lect. Notes Comput. Sci., 2007, (422-429):
  • [37] Optimum neural network construction via linear programming minimum sphere set covering
    Wei, Xun-Kai
    Li, Ying-Hong
    Li, Yu-Fei
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 422 - +
  • [38] Minimum-Polytope-Based Linear Programming Decoder for LDPC Codes via ADMM Approach
    Bai, Jing
    Wang, Yongchao
    Lau, Francis C. M.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1032 - 1035
  • [39] Minimum-Fuel Energy Management of a Hybrid Electric Vehicle via Iterative Linear Programming
    Robuschi, Nicolo
    Salazar, Mauro
    Viscera, Nicola
    Braghin, Francesco
    Onder, Christopher H.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14575 - 14587
  • [40] On the minimum s-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s-t$$\end{document} cut problem with budget constraints
    Hassene Aissi
    A. Ridha Mahjoub
    [J]. Mathematical Programming, 2024, 203 (1-2) : 421 - 442