A stochastic approach to the construction of one-dimensional chaotic maps with prescribed statistical properties

被引:24
|
作者
Diakonos, FK [1 ]
Pingel, D
Schmelcher, P
机构
[1] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[2] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
关键词
D O I
10.1016/S0375-9601(99)00775-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a recently found parametrization of the solutions of the inverse Frobenius-Perron problem within the class of complete unimodal maps to develop a Monte Carlo approach for the construction of one-dimensional chaotic dynamical laws with given statistical properties, i.e. invariant density and autocorrelation function. A variety of different examples are presented to demonstrate the power of our method. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [31] Statistical properties of one-dimensional "turbulence"
    Peyrard, M
    Daumont, I
    [J]. EUROPHYSICS LETTERS, 2002, 59 (06): : 834 - 840
  • [32] Chaotic properties of a one-dimensional Lorentz gas
    Appert, C
    Bokel, C
    Dorfman, JR
    Ernst, MH
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) : 357 - 361
  • [33] An approach to the ordering of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (04) : 565 - 584
  • [34] STOCHASTIC TRANSITIONS AND STATISTICAL FEATURES OF ONE-DIMENSIONAL CHAINS
    CASARTELLI, M
    [J]. PHYSICAL REVIEW A, 1979, 19 (04): : 1741 - 1746
  • [35] Construction of logic gates for one-dimensional Lorentz gases, and their dynamics and statistical properties
    Kreslavskiy, DM
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2005, 11 (3-4) : 317 - 374
  • [36] ITERATIVE PROPERTIES OF NONQUADRATIC ONE-DIMENSIONAL MAPS
    MO, A
    HEMMER, PC
    [J]. PHYSICA SCRIPTA, 1984, 29 (04): : 296 - 302
  • [37] DYNAMIC FRACTAL PROPERTIES OF ONE-DIMENSIONAL MAPS
    SZEPFALUSY, P
    TEL, T
    [J]. PHYSICAL REVIEW A, 1987, 35 (01): : 477 - 480
  • [38] A minimal approach for the local statistical properties of a one-dimensional disordered wire
    Ancliff, M
    Muzykantskii, BA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5751 - 5760
  • [39] A WEIGHTED CHAOTIC BLOCK ENCRYPTION ALGORITHM USING MULTIPLE ONE-DIMENSIONAL CHAOTIC MAPS
    Wang Xing-Yuan
    Wang Xiao-Juan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (29): : 3987 - 3996
  • [40] Stabilization of chaotic dynamics of one-dimensional maps by a cyclic parametric transformation
    Loskutov, AY
    Tereshko, VM
    Vasiliev, KA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04): : 725 - 735