A stochastic approach to the construction of one-dimensional chaotic maps with prescribed statistical properties

被引:24
|
作者
Diakonos, FK [1 ]
Pingel, D
Schmelcher, P
机构
[1] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[2] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
关键词
D O I
10.1016/S0375-9601(99)00775-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a recently found parametrization of the solutions of the inverse Frobenius-Perron problem within the class of complete unimodal maps to develop a Monte Carlo approach for the construction of one-dimensional chaotic dynamical laws with given statistical properties, i.e. invariant density and autocorrelation function. A variety of different examples are presented to demonstrate the power of our method. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [1] Design of one-dimensional chaotic maps with prescribed statistical properties
    Baranovsky, A
    Daems, D
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1585 - 1598
  • [2] Statistical properties of chaotic binary sequences generated by one-dimensional maps
    Oohama, Y
    Kohda, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (09) : 1993 - 2002
  • [3] Nonequilibrium statistical mechanics approach to one dimensional chaotic maps
    del Río-Correa, JL
    [J]. REVISTA MEXICANA DE FISICA, 2002, 48 : 207 - 219
  • [4] Statistical properties of one-dimensional maps with critical points and singularities
    Diaz-Ordaz, K.
    Holland, M. P.
    Luzzatto, S.
    [J]. STOCHASTICS AND DYNAMICS, 2006, 6 (04) : 423 - 458
  • [5] Statistical properties of chaos demonstrated in a class of one-dimensional maps
    Csordas, Andras
    Geza Gyoergyi
    Szepfalusy, Peter
    Tel, Tamas
    [J]. CHAOS, 1993, 3 (01) : 31 - 49
  • [6] Effects of noise on chaotic one-dimensional maps
    Malescio, G
    [J]. PHYSICS LETTERS A, 1996, 218 (1-2) : 25 - 29
  • [7] Ultradiscretization of solvable one-dimensional chaotic maps
    Kajiwara, Kenji
    Nobe, Atsushi
    Tsuda, Teruhisa
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (39)
  • [8] Research on entropy properties comparison of different one-dimensional chaotic maps
    Hu Xing-hua
    Gao Lei-fu
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING (MSMEE 2017), 2017, 123 : 840 - 847
  • [9] MEHRAB MAPS: ONE-DIMENSIONAL PIECEWISE NONLINEAR CHAOTIC MAPS
    Borujeni, Shahram Etemadi
    Eshghi, Mohammad
    Boroujeni, Mahdi Safarnejad
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05):
  • [10] STATISTICAL PROPERTIES OF CHAOTIC SOLUTIONS OF A ONE-DIMENSIONAL MODEL FOR PHASE TURBULENCE
    MANNEVILLE, P
    [J]. PHYSICS LETTERS A, 1981, 84 (03) : 129 - 132